
Ownership and Defects in Open-Source Software

Eric Camellini
Delft University of Technology

Delft, The Netherlands
eric.camellini@gmail.com

Kaj Dreef
Delft University of Technology

Delft, The Netherlands
K.Dreef@student.tudelft.nl

ABSTRACT
Code ownership measures the proportion of contribution of
the developers to a source code artifact, in terms of code
changes (e.g. number of commits). It can be used to de-
scribe the responsibility for a certain piece of software or the
expertise of the developers with respect to it. Responsibil-
ity and expertise are important factors in the development
process, and can affect software quality: for this reason a
lot of studies focused on determining how to measure the
ownership in order to include it in defect prediction mod-
els in an effective way. Bird et al [3] and Greiler et al. [7]
showed that ownership metrics are a good indicator for soft-
ware quality in Microsoft software projects, while Foucault
et al. [6] found contrasting results for what concerns open-
source software projects. However, in our opinion these past
studies compute the ownership without considering the soft-
ware revisions that actually introduce defects. Furthermore,
no study did an explicit analysis of the effect of the granu-
larity chosen to consider the code changes (e.g. considering
lines instead of commits).

In this paper we contribute to the past research in the fol-
lowing ways: (1) we build dataset, publicly available, that
contains information about code changes and defects over
the whole development history for five open-source software
projects; (2) we describe and apply a novel technique to com-
pute software metrics, using the above mentioned dataset,
that can capture the state of the software right after the
introduction of defective code; (3) we use this technique to
empirically study the effect that ownership has on software
quality for five open-source software projects, considering
an exhaustive set of metrics in terms of granularity of code
changes.

Using this approach and considering also a set of classic
and effective code metrics we are able to classify defective
files, using Random Forest, with an average out-of-bag error
rate of 23% and an average relative improvement of 22%
over a model that uses only the classic metrics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

The 13th Working Conference on Mining Software Repositories ’16 Austin,
Texas USA
c© 2016 ACM. ISBN .

DOI:

CCS Concepts
•Software and its engineering→ Software defect anal-
ysis; Open source model; •Information systems → Data
mining;

Keywords
Ownership; Software quality; Process metrics

1. INTRODUCTION
Software defects correction have a great impact on the

economy: it costs tens of billions of dollars every year and
the 50% of developers programming time [2, 1]. For this
reason, in recent years, a wide number of studies focused on
defining and comparing software metrics that can be useful
to build models for defect prediction [3, 14, 7, 15, 11, 17].
A software metric is a measure of a property of the soft-
ware that can be related to the code (code metric) or to its
development process (process or change metric). Previous
studies also reported that process metrics are better-suited
for prediction models [11, 15]. These past results showed
that the developers behaviour has more impact on software
quality than the characteristics of the software itself. Code
ownership metrics are process metrics, and can in general be
defined as measurements of the proportion of contribution of
the developers to a source code artifact over a certain period
of time, in terms of code changes (e.g. number of commits)
[7].

Previous studies reported contrasting results on the rela-
tion between software quality and ownership; this is prob-
ably due to the fact that ownership metrics are highly de-
pendant on the process used to develop the software and
on the organizational structure of the team. Bird et al. [3]
showed that there is a significant correlation between owner-
ship and number of defects in Microsoft Windows projects,
while accordingly to Foucault et al. [6] the same metrics do
not result in the same kind of relationship when computed
on open-source software (OSS) artifacts. Foucault et al. [6]
also introduced the idea of computing ownership metrics on
artifacts of different granularities (Java files and packages).
Greiler et al. [7] applied the same principle on different Mi-
crosoft Products, and their results showed that it can be
more significant to use ownership metrics to classify defec-
tive and non-defective artifacts rather than to try to infer
the number of defects.

All the previous studies computed the metrics on a certain
release of the software and then tried to find a correlation
between these metrics and the number of defects introduced

before that release. We think that the metrics should in-
stead be computed on the software artifacts just after the
commits that introduce a defect, to better capture the exact
state of the code when it becomes defective. In addition to
that, most of the previously cited works used the commit
count to measure the contribution of the developers to the
source code artifacts; none of them tried to compute the
ownership metrics in a more fine-grained way (e.g. consid-
ering the amount lines of code added and deleted). Further-
more, to our knowledge, a classification approach like the
one described in in the previous paragraph has not yet been
applied to Open-Source Software.

In this work, we study the effect of code ownership on soft-
ware quality by trying to classify defective source code files
on different Open-Source software projects. We expand the
cited previous work by: (1) computing ownership metrics on
source files just after some defective code is introduced; (2)
experimenting the effects of changing the granularity of the
metrics; (3) applying a classification approach to distinguish
defective and non-defective source files on Open-Source soft-
ware projects.

To spot the introduction of defective code we use the con-
cept of implicated code as described by Rahman et al. [14]
(also called fix-inducing code [16]). We selected 5 OSS projects
and, for each one of them, we: (1) create a dataset that cap-
tures the history of its development in terms of developers
contribution and implicated code introduction (2) use this
dataset to create a second dataset that contains the owner-
ship metrics computed for every version of every file, with
different granularities (3) use these metrics, together with
some classic defect prediction code metrics, to classify the
defective file versions with the Random Forests [4] and Lo-
gistic Regression techniques (4) measure how the ownership
metrics improve the model that uses only the classic ones.

Our results show that ownership metrics are indicative
for software defects, giving a significant improvement over
a classification model built using only classic code metrics;
this is particularly evident when using a more fine-grained,
line-based, approach to compute the ownership, as we hy-
pothesized.

We think that our approach can capture the characteris-
tics of the defective code in a better way, leading to more
generalizable outcomes.

Code and datasets created for this work are publicly avail-
able.1

2. THE PROBLEM
The general problem that is targeted in this paper is that

building software defect prediction models is a challenging
activity, and one of its main difficulties is that it is highly
project-dependant [17]. In particular we address this prob-
lem for models built using code ownership metrics. Code
ownership is a measurement of the proportion of contribu-
tion of the developers to a source code artifact over a cer-
tain period of time, in terms of code changes (e.g. number
of commits) [7]. It describes whether the responsibility for
a certain software artifact is spread around many develop-
ers, or if there is a single person that can be considered
its “owner”; it can also be interpreted as a measure of the
expertise of a developer with respect to the code artifact [3].

This work addresses the more specific problem that cur-

1github.com/kajdreef/IN4334-MSR

rently it is difficult to generalize the effect of code owner-
ship on software quality; previous studies show contrasting
result when trying to correlate these two aspects [3, 6, 7].
What makes the problem complicated is that code owner-
ship highly depends on the organizational structure of the
development team and on the developers behaviour.

2.1 Existing solutions and limitations
The main source of inspiration for us comes from Bird et

al. [3], who did, to our knowledge, one of the first empirical
studies of the effects that code ownership has on software
quality. They used the concept of ownership in a defect pre-
diction model built for Microsoft Windows; to do that they
extracted the following metrics from the software artifacts:

• Ownership: proportion of ownership for the highest
contributor;

• Minor : number of contributors with a proportion of
ownership that is below a certain threshold (minor con-
tributors);

• Major : number of contributors with a proportion of
ownership that is above the threshold used for the mi-
nors (major contributors);

• Total : total number of contributors.

As artifacts they considered the software binaries of a Mi-
crosoft Windows release and as variable to measure the pro-
portions of ownership on every artifact they used the num-
ber of commits that changed it before the release, with a 5%
threshold to identify minor and major contributors. These
metrics have been then reused and revisited in further stud-
ies [6, 7], targeting different projects (Microsoft and OSS),
different kind of artifacts (source files, source code folders
and Java packages) and changing the threshold (5%, 20%
and 50%), but using the same variable to measure the own-
ership and again computing it on the artifacts of a specific
software release.

In the cited works we see the following main shortcomings:

1. The metrics are computed on the code artifacts of a
specific software release and then correlated with the
presence of defects in it. The problem is that in this
way the metrics are not extracted when the defects are
introduced, but later, so they don’t capture the state
of the code in the moment that it becomes defective;

2. The variable used to measure the ownership is the
number of commits to the code artifact, a coarse-grained
measure of the code changes, and none of the cited
studies experimented different granularities;

3. None of the previous works did an explicit analysis on
the impact that changing the threshold used to distin-
guish minor and major contributors has on the study
results;

In this work we try to solve these problems; we think that
taking into account these three factors results in ownership
metrics that better adapt to the specific characteristics of the
software project. This leads to more generalizable outcomes,
so we address the more general problem described at the
beginning of this Section.

3. PROPOSED SOLUTION
In essence, our approach focuses on solving the first prob-

lem described in Section 2.1, so on when ownership metrics
are computed. Once solved this problem, the second and
third are addressed computing more metrics for different
granularities and thresholds and studying their effects on
the results.

To solve the first problem we cannot simply compute the
metrics on all the artifacts of a specific version of the soft-
ware, as the previous studies did, so we use a different ap-
proach: we extract them from every version of every artifact
over the history of the project development. To correlate
them with the defects we then mark all the artifacts ver-
sions that follow the introduction of defective code and we
try to build a classification model that, using the metrics,
can distinguish them from the other ones. In this way the
metrics are used to build a model that can ideally determine
when a commit introduces a bug, because we extract them
on the software artifacts as soon as they become defective
and compare them with the normality.

We focus on computing the ownership metrics considering
the Java source files as target artifacts; we are first interested
in determining which versions of the files follow the intro-
duction of defects. To spot the introduction of defects we
use the concept of implicated code.

3.1 Implicated code
We refer to the concept of implicated code as described by

Rahman et al. [14]: “Implicated code is code that is modified
to fix a defect”. Rahman et al. also describe a technique to
identify the implicated code using git (see Figure 1). The
steps to do it using git 2 are the following:

1. Identify a commit that fixes a bug: this commit changes
one or more files from version n to version n + 1;

2. Identify the lines that are deleted or changed by this
commit using the git diff command between the ver-
sions n and n + 1;

3. Checkout revision n, since it still contains the defective
code (changed or removed lines), and use the git blame
command to identify in which versions of the file it
was introduced: the same code in that versions is the
implicated code;

4. If that code was introduced after the fixed bug was
reported, then mark it as innocent (not implicated).

In this work we don’t consider the last step: this because
we assume that if the lines are added after the issue reporting
date, they are still based on a defective file, and so they
contribute to the defect. We want to highlight the fact that
a line of code is marked as implicated only in the version of
the file in which it is introduced.

Since we need to spot defective file versions we define the
new concept of implicated file: a file in a specific version
is implicated if that version contains implicated code.

3.2 Bug and commit linking technique
To apply the technique described to extract the implicated

files we must be able to identify which commits are bug
fixes. To do so we decided to use the JIRA issue tracking

2git-scm.com

Figure 1: Implicated code identification technique

system 3 and in particular the bug convention that Apache
projects use on it 4. Every Apache software project that uses
JIRA has an issue key that is, by convention, mentioned in
commits that address an issue, together with the issue id.
In particular, the convention is to include these information
with the following notation: KEY-ID (e.g. LUCENE-1234 if
the commit addresses the issue 1234 of the Lucene project).

We consider a commit as a bug fix if its message mentions
the key and id of an issue that is marked as a fixed bug on
JIRA. To navigate through the JIRA issues we use the data
extracted in JSON format in the work by

<MISSING: Cite the technical report for the JIRA JSON
issues extraction.>

3.3 Ownership metrics
As ownership metrics we decided to compute the ones

defined by Bird et al. [3] and already described in Section 2.1.
In particular we compute the first three ones (Ownership,
Minor and Major) using three different variables to quantify
code changes: commit count, number of lines added and
number of lines deleted. We also use five different thresholds
to distinguish minor and major contributors: 5%, 10%, 20%,
30% and 40%. In this way we address also the second and
the third of the problems described Section 2.1.

To expand our study we also decided to compute the au-
thorship. Authorship can be seen as memory-less ownership:
the metrics of this class are not based on the history of the
development but only on the content of the file on which
they are computed. The concept of authorship was already
introduced by Rahman et al. [14], but was applied only to
implicated code chunks and not at a file level. In particular
we compute the two following metrics:

• Line authorship: proportion of lines in the file au-
thored by the developer with the highest proportion
of lines authored;

• Total authors: total number of authors of the lines in
the file.

We consider these two measures as part of our ownership
metrics, following the memory-less vision described above.
To clarify the difference between the two classes of metrics

3atlassian.com/software/jira
4issues.apache.org/jira/secure/BrowseProjects.jspa\#all

lets suppose to compute them on the version V of the file F,
using the number of lines added as variable to quantify the
code changes:

• the proportion of ownership of the contributor C is
computed as the number of lines added to F by C over
all the considered history (all the versions of F that
precede V), divided by the total number of lines added
to F by all the contributors over all the considered
history;

• the proportion of authorship of the contributor C is
computed as the number of lines that are actually in
F in its version V and that are authored by C, divided
by the size of F in the same version (in terms of lines);

3.4 Classification
As already stated previously in this section, we use the

concept of implicated code to mark code that can be consid-
ered defective, therefore in this research the defective files
are the implicated ones. This means that the classification
model that we want to build should distinguish which ver-
sions of the project files are implicated using the metrics
that we described.

To be able to evaluate our results in a way that is more
sound in the defect prediction field, we first build a model
that uses some classic code metrics that are known to be
effective, then we add our metrics and we quantify the im-
provement in the model accuracy (a similar approach was
also adopted by Bird et al. [3]).

The classic metrics that we decided to use are (1) file size;
(2) comment-to-code ratio; (3) number of previous defects
(implications, in our case). We selected these three because
are known to be indicative of software defects [15, 5].

4. METHODOLOGY

4.1 Research questions
We structure our research through the following research

questions:

RQ1 Are ownership metrics indicative for the presence of
implicated code in source files for open-source software
projects?

RQ2 Can ownership metrics be used to build a classification
model to identify implicated source files?

2a For which level of granularity (line-based or commit-
based) do ownership metrics give more accurate
results when used to build the classification model?

2b How does the value of the threshold, used to dis-
tinguish minor and major contributors, impacts
on the accuracy of the classification model?

The first research question is a more general question,
which is needed to determine if in general ownership metrics
can be a good indication of the presence of implicated code
in source files for open-source software. The second research
question focuses on if it is possible to classify the implicated
files based on ownership metrics. The sub-questions focus
on the type of metrics included in the classifier: in particular
on the parameters used to compute them (i.e. code changes
granularity and minor-major threshold) and on the effects
resulting from changing these parameters.

4.2 Study subjects
A software project, in order to be used for this research,

should (1) be and open-source software project; (2) use git as
version control system, or have a git mirror of the repository
(requirement for the technique described in Section 3.1; (3)
use JIRA as issue tracking system and adhere to the Apache
JIRA convention, so that we can apply the technique de-
scribed in Section 3.2.

We selected five different software projects as study sub-
jects, all written using the Java programming language. In
Table 1 we show some information about each one of them.
When choosing the projects we checked if they satisfied the
previous mentioned requirements, but also tried to choose
them with different sizes and application fields, in order to
have a diverse group.

For each project we decided to consider its whole devel-
opment history until the 01/01/2015: this because we had
issues extracted in JSON until the half of the year, and we
only wanted to consider code for which the most of the is-
sues were already discovered and fixed. We also decided to
discard some of the first days of commits from the data ex-
tracted from the repositories, because these are the commits
needed to setup the project repository or the git mirror. We
did this last step by manually checking the messages of the
first available commits.

4.3 Research steps
What we want to do is to build a model that is able to

identify the implicated files in the history of the selected
software projects, and to evaluate its effectiveness. In this
Section we describe in a detailed way all the steps followed
in this research.

4.3.1 Project history dataset
In the first step of our research we create, for every soft-

ware project, a dataset that contains all its Java files history
(over the considered time period, see Section 4.2) in terms
of commits, lines, bug fixes and implications. To do that
we go through all the commits in its git log, and for every
commit we:

1. extract the list of the Java files affected;

2. for each affected file update the information about the
contribution that the author of the commit performed
to it in terms of lines added, lines deleted and number
of commits;

3. extract information about the file itself: size (LOC),
authorship information, comment lines, if it is a bug
fix (using the technique described in Section 3.2);

4. add to the data set, for each one of these files, as many
lines as the number of authors that contributed to it
until the considered commit (included): each one of
these lines contains the information about the contri-
bution of the corresponding author to the correspond-
ing file, at the moment of the corresponding commit,
plus the information related to the commit itself.

We then add to this dataset, once extracted, another col-
umn that says when a file is implicated, using the approach
described in Section 3.1.

A complete list of the columns contained in the dataset
can be found in Table 4. Some of them contain information

Table 1: Characteristics of the studied projects (until 01/01/2015)
Project LOC Contributors Commits Application
Camel 103883 125 18371 Rule-based routing and mediation engine
Lucene-solr 220632 55 13841 Information retrieval library and search platform
Mahout 177317 31 3163 Implementation of scalable machine-learning algorithms
Maven 129132 51 9909 Build manager
Zookeeper 108132 13 1283 Distributed system configuration service

that are not related to the single author, but to the file or
the commit: in this case their value will be the same for
more than one line.

An example of this procedure is shown in Figure 2 and
Table 2, it shows only information about commits and lines
added but it can be used to better understand the described
methodology.

Figure 2: Example of a small portion of develop-
ment history (i.e. commits), with lines added infor-
mation. The corresponding history dataset is shown
in Table 2

columns (see Table 4)
file sha 4 5 6 7 11 12

A.java #1 Alice 10 10 10 1 1
B.java #1 Alice 20 20 20 1 1
A.java #2 Alice 10 0 40 1 2
A.java #2 Bob 30 30 40 1 2
B.java #2 Alice 20 0 35 1 2
B.java #2 Bob 15 15 35 1 2
A.java #3 Alice 15 5 45 2 3
A.java #3 Bob 30 0 45 1 3
B.java #3 Alice 30 10 45 2 3
B.java #3 Bob 15 0 45 1 3
C.java #3 Alice 20 20 20 1 1

Table 2: Example of a small portion of history
dataset with a reduced set of columns. The corre-
sponding development history is shown in Figure 2

.

4.3.2 Metrics computation
In this second step, for every project and using the re-

spective history dataset, we compute the dataset that con-
tain the metrics that we need for the classification. We need
to compute the metrics for every version of every file, so
the computation is done grouping by commit SHA and file
(columns 2 and 3 of the history dataset, see Table 4).

As metrics we compute the ownership ones described in
Section 3.3 together with the classic code metrics listed in
Section 3.4. This will produce another data set, with fewer
lines, that contains the metrics and the column“implicated”,
defined as in Table 4. A complete set of the columns of the
metrics dataset can be seen in Table 5, where the terms
ownership, minor, major and total must be interpreted as
defined in Section 3.3.

columns (see Table 5)
sha file 3 4 6 11 12 13 14
#1 A.java 1 / 1 10 / 10 1 1 0 1 0
#1 B.java 1 / 1 20 / 20 1 1 0 1 0
#2 A.java 1 / 2 30 / 40 2 2 0 1 1
#2 B.java 1 / 2 20 / 35 2 2 0 2 0
#3 A.java 2 / 3 30 / 45 2 2 0 2 0
#3 B.java 2 / 3 30 / 45 2 2 0 2 0
#3 C.java 1 / 1 20 / 20 1 1 0 1 0

Table 3: Example of a small portion of metrics
dataset with a reduced set of columns, extracted
from the history dataset example shown in Table 2
using a 30% threshold to distinguish minor and ma-
jor contributors.

A different version of this dataset is computed for every
threshold listed in Section 3.3 (the threshold used to dis-
tinguish minor and major contributors). Table 3 shows an
example of the metrics dataset resulting from the history
dataset example shown in Table 2, using a threshold of 30%;
it contains a reduced set of columns: only the ones based on
the lines added and on the commit count.

4.3.3 Classification
Using the metrics dataset we build, for every project, a

classification model using the Random Forests approach [4],
and we then evaluate how effective it is when used to distin-
guish which file versions are implicated. We also use Logistic
Regression to determine which features are significant. The
choice of these techniques is based on the fact that they
were already used respectively in [7] and [3]. An accurate
description of this process is provided in Section 5.

5. EVALUATION

5.1 Experiment 1: Ownership and granular-
ity

5.1.1 Experiment design
In this experiment we address research questions 1 and 2

building a model that can classify implicated files using the
classic code metrics, and evaluating if the ownership met-
rics can improve its effectiveness. We also address question
2a comparing the improvement given by different ownership
granularities (commit-based and line-based).

This experiment is performed for every considered project
using its metrics dataset with the 5% threshold. We define
different subsets of features (see Table 7), and for each one
of them we cross-validate (10-folds) the Random Forest [4]
model on a sample of the dataset. The sample contains the
same number of lines for both the classes (implicated and
not implicated, see Table 6).

Table 4: Columns of the history data set
Column Description
1 project project name
2 file file name (full path)
3 sha commit SHA (can be interpreted as file version or revision)
4 author name of the contributor (NOTE: it is not the author of the commit, but

one of the file contributors)
5 author file tot added total lines added by the author to the file
6 author file added this commit lines added by the author to the file with the commit (different from 0 only for

the author of the commit)
7 file tot added total lines added to the file
8 author file tot deleted total lines deleted by the author from the file
9 author file deleted this commit lines deleted by the author from the file with the commit (different from 0 only

for the author of the commit)
10 file tot deleted total lines deleted from the file
11 author file commits total commits to the file by the author
12 file tot commits total commits to the file
13 current lines authored number of lines actually present in the file and authored by the author (obtained

from the git blame output)
14 current file size file size measured in LOC (lines of code)
15 current comment lines comments size in terms of lines
16 max current author number of lines actually present in the file and authored by the author that au-

thored the highest number of lines actually in the file (obtained from the git blame
output)

17 total current authors number of authors of the lines actually present in the file (obtained from the git
blame output)

18 commit date date of the commit
19 bug fix 1 if the commit fixes one or more bugs, zero otherwise
20 fixed bugs JIRA KEY-ID of the bugs fixed, empty if the commit is not a bug fix
21 affected versions list of the project releases affected by the bugs fixed by the commit, empty if the

commit is not a bug fix
22 implicated 1 if the file version is implicated

Table 6: Class sample size per project
Project Implicated files Sample size
Camel 7076 4000

Lucene-Solr 14416 4000
Mahout 2114 2000
Maven 2383 2000

Zookeeper 819 800

We evaluate the constructed classifiers with the out-of-
bag error rate (OOB) averaged over the 10-folds, and use it
to determine if the improvement over the classic metrics is
statistically significant. This is done by comparing with the
t-test the outcome of every set of metrics with the outcome
obtained considering only the classic ones. For the test we
assume a significance level of 0.05.

5.1.2 Results
In Table 8 the results for the project Lucene-Solr can

be found. It can be noted here that the different granu-
larities between metrics have a significant influence on the
performance of the classifier. Line-based metrics (deleted,
added, authorship) give a larger performance increase than
the commit-based ones. This effect is highlited also in Fig-
ure 3: it shows the importance of the single metrics for
Lucene-Solr. Eventually, Figure 4 shows the corresponding
ROC curve. Similar results come from the other projects.

Table 9 shows a summary of the results of the experiment.
Using all the metrics the average OOB is 22.99% which gives
an average increase of 21.71% in performance over the clas-
sic metrics. For what concerns the granularity, line-based
metrics perform on average 15% better than commit-based

Table 7: Considered set of metrics
Group Metrics
Classic file size, comment to code ratio, pre-

vious implications
Commit based Classic + commit ownership, mi-

nor contributors, major contributors
Deleted Classic + line ownership deleted,

lines deleted minor contributors,
lines deleted major contributors

Added Classic + line ownership added,
lines added minor contributors,
lines added major contributors,

Line authorship Classic + line authorship, to-
tal authors

Line based Classic + Added + Deleted
All metrics All the above mentioned metrics mi-

nus the highly correlated ones (cut-
off=0.75)

metrics. All the p-values resulting from the significance test
performed on the improvements are far below the 0.05 sig-
nificance level, meaning that all the improvements over the
classic metrics are statistically significant.

5.2 Experiment 2: Logistic regression

5.2.1 Experiment design
In the previous experiment Random Forest was used to

determine the performance of different granularities. In this
experiment we will take it a step further by taking a look
at the individual metrics to see how statistically significant
they are when it comes to each project and different thresh-

Table 5: Columns of the metrics dataset; See Section 3.3 and Table 4 for the terms used in the definitions.
Column Description
1 sha commit SHA (can be interpreted as file version or revision)
2 file file name (full path)
3 commit ownership max(author file commits / file tot commits)
4 line ownership added max(author file tot added / file tot added)
5 line ownership deleted max(author file tot deleted / file tot deleted)
6 total contributors total number of contributors (count the of the lines grouped together)
7 line authorship max current author / file size
8 total authors total current authors
9 file size file size
10 comment to code ratio current comment lines / (current file size - current comment lines)
11 major contributors count where author file commits / file tot commits >= threshold
12 minor contributors count where author file commits / file tot commits < threshold
13 lines added major contributors count where author file tot added / file tot added >= threshold
14 lines added minor contributors count where author file tot added / file tot added < threshold
15 lines deleted major contributors count where author file tot deleted / file tot deleted >= threshold
16 lines deleted minor contributors count where author file tot deleted / file tot deleted < threshold
17 previous implications count how many times this file was implicated before that version
18 implicated 1 if the file version is implicated

Table 8: Lucene-Solr experiment 1 results

Features
Error Rate

with 5% threshold
Improvement
over Classic Precision Recall

Classic 32.59% 0.00% 67.85% 67.26%
Classic +

Commit based 30.38% 6.78% 67.21% 70.62%

Classic +
Deleted 29.69% 8.88% 70.09% 70.40%

Classic +
Added 29.49% 9.51% 69.40% 70.98%

Classic +
Line authorship 29.46% 9.59% 74.29% 69.11%

Classic +
Line based 26.12% 19.86% 80.41% 71.13%

All metrics 26.34% 19.16% 80.50% 70.81%

Figure 3: Importance of variables for Lucene-Solr

olds. The goal is to determine which metrics are significant,
does the significance change depending on the threshold,
and to get an indication to see if there is a common group
of metrics that is significant for the selected study subjects.

We determine the statistically significant metrics by run-
ning Logistic Regression on the dataset with all the metrics
and without feature selection, since this technique automati-
cally detects which ones are not linearly dependent with each
other. Also logistic regression is the best choice, because it
automatically computes the significance of every variable, in
terms of p-value.

Table 10: Logistic Regression outcomes explanation.
Pr(>|z|) Symbol

0 ∗ ∗ ∗
0.001 ∗∗
0.01 ∗
0.05 .
0.1
NA NA

5.2.2 Results
Table 10 shows how to interpret the results of the Logistic

Regression: NA means that the variable is considered lin-
early dependent with an other variable and because of that

Table 9: Summary of the results of experiment 1

Project Classic Commit based Line based All metrics
Improvement

(all metrics with FS)
Improvement
(Line based)

lucene-solr 32.59% 30.38% 26.12% 26.34% 19.16% 19.86%
mahout 31.68% 29.44% 25.42% 29.33% 7.43% 19.77%
Camel 29.36% 25.16% 19.38% 19.25% 34.43% 34.00%
Maven 25.51% 23.19% 19.27% 19.09% 25.15% 24.45%

Zookeeper 26.94% 22.35% 20.67% 20.92% 22.37% 23.27%
Average 29.22% 26.10% 22.17% 22.99% 21.71% 24.27%

Figure 4: ROC curve resulting from experiment 1
on Lucene-Solr, considering all the metrics.

it is not taken into consideration. Table 11 summarizes the
results of the significance of the different metrics for the 5%
threshold.

The classic metrics (file size, previous implication, com-
ment to code ratio, and total contributors) are, as expected,
highly significant. It can be noted that the line authorship
is also highly significant for all the projects, while the rest of
the ownership metrics significance values vary between the
various projects, meaning they are probably project depen-
dent. In the table it can be found that for every project at
least three ownership metrics (without considering the au-
thorship) are statistically significant (with a 0.05 significance
level).

When looking also at the other thresholds there is not a
clear improvement, meaning that when the threshold changes
the change in the significance of the metrics is not rele-
vant: while some of them become more significant, others
result to be less important. For example, when considering
a 10% threshold, lines added major contributors becomes
more significant for Lucene-Solr but also less significant for
Mahout, in comparison to the 5% threshold scenario (see
Tables 11 and 12).

5.3 Experiment 3: Minor-major thresholds

5.3.1 Experiment design
Research question 2b has to do with the threshold used

to distinguish minor and major contributors and with how

much does it influence the performance of the classifier. The
goal of the experiment is to determine the effect of the dif-
ferent thresholds that we selected to use: 0.05, 0.10, 0.20,
0.30, and 0.40.

As said in Section 4.3.2, for every project we computed
a metrics dataset for each one of the thresholds. In this
experiment we use again the Random Forest technique to
build a classifier for every threshold and every project, con-
sidering only the metrics that depend on the threshold, so
all the ones that measure minor and major contributors (see
Table 5). This results in 25 classifiers.

The performance of every classifier is measured using 10-
folds cross-validation and the OOB error: since we used only
features that depend from the threshold, the difference be-
tween these resulting models is only related to its variation.

To determine if the 5 groups of OOB errors, corresponding
to different thresholds, differ in a statistically significant way
we apply an ANOVA test, which will tell if the outcomes
are statistically significant. Based on the output p-values
we can determine if some thresholds are statistically better
than other ones for some of the projects.

5.3.2 Results
In Table 13 shows the out-of-bag error for the different

projects and thresholds. It can be noticed that changing
the threshold doesn’t give a clear increase in performance in
any case. The ANOVA test shows that there is no significant
outcome: all p-values are above 0.05, meaning that major-
minor threshold doesn’t have any significant impact on the
performance.

5.4 Summary of results
RQ1,2: Based on the results of the experiments we can

say that ownership metrics are an indication for the presence
of implicated code. Over the 5 projects we got an average
classifier OOB of 22% with a significant improvement over
the one that uses only classic metrics (22%).

RQ2a: The level of granularity used to compute the own-
ership metrics is important: our results show that line-based
metrics give a significant improvement and are on average
12% more effective than the commit-based ones. The au-
thorship can also be considered a line-based ownership met-
ric; it gives even a better improvement and it is statistically
significant for all the projects.

RQ2b: For what concerns the threshold used to distin-
guish minor and major contributors, the results show that
its value doesn’t influence the classifier accuracy in a statis-
tically significant way; this is due to the fact that the metrics
that depend on the threshold are in general not so effective
in this setup.

5.5 Discussion

Table 11: Results of logistic regression with the metrics with a 5% threshold, see Table 10 for the interpre-
tation.

Metrics Lucene-Solr Camel Mahout Maven Zookeeper
file size ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

previous implications ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
comment to code ratio . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

commit ownership ∗ ∗ ∗ ∗ ∗ ∗ ∗ .
minor contributors NA NA ∗∗ NA NA
major contributors ∗ ∗ ∗ ∗ ∗ ∗ NA ∗ ∗ ∗ ∗ ∗ ∗
total contributors ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

total authors ∗ ∗ ∗ ∗ ∗ ∗
line authorship ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

line ownership added ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .
lines added minor contributors NA NA NA
lines added major contributors ∗∗ . ∗∗

line ownership deleted . ∗ ∗ ∗ ∗ ∗ ∗ .
lines deleted minor contributors NA NA NA NA
lines deleted major contributors ∗ ∗ ∗∗

Accuracy 0.6325 0.65 0.6925 0.6425 0.59375

Table 12: Results of logistic regression with the metrics with a 10% threshold, see Table 10 for the interpre-
tation.

Metrics Lucene-solr Camel Mahout Maven Zookeeper
file size ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

previous implications ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
comment to code ratio ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

major contributors ∗ ∗ ∗ ∗ ∗ ∗
commit ownership ∗ ∗ ∗ ∗∗ ∗∗
minor contributors NA NA NA NA
total contributors ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

total authors ∗ ∗ ∗ ∗ ∗ ∗
line authorship ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

line ownership added ∗ ∗ ∗ ∗∗ ∗∗
lines added minor contributors NA NA NA NA NA
lines added major contributors ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

line ownership deleted ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
lines deleted minor contributors NA NA NA NA NA
lines deleted major contributors ∗ ∗ ∗

Accuracy 0.63125 0.64375 0.695 0.6725 0.5875

The obtained results show that our work contributes to
the research in this field, confirming some past outcomes
and contradicting some others. Bird et. al [3] and Greiler et
al. [7] showed that ownership metrics are indicative for soft-
ware quality in Microsoft projects while Foucault et al. [6]
showed the opposite regarding OSS projects. Our results
confirm the fact that the effect of code ownership on soft-
ware quality is highly project dependant, but we can con-
sider ownership metrics indicative for software quality also
for OSS projects, since for each one of our case studies three
or more of them are significant for the classification (see Ta-
ble 11) and considering them improves a classic code metrics
model in a significant way (see Table 9). Our result are in
contrast with the ones from Focault et al. [6], and the reasons
could be that: (1) we try to classify defective files instead
of correlate the metrics with the number of defects; (2) we
consider also ownership at a line-based granularity; (3) we
consider also memory-less ownership (authorship).

Looking at the metrics significance in Table 11 we can

see that total contributors and line authorship are the only
non-classic metrics that are always significant: this confirms
the results from Greiler et al. [7] and Rahman et al. respec-
tively. This outcome makes sense, since the two mentioned
studies tried to distinguish defective and non-defective arti-
facts (i.e. Microsoft source files and C language implicated
code chunks) with approaches similar to our (i.e. classifica-
tion). Commit ownership was also shown to be important
by Bird et al. [3] and Greiler et al. [7], and for us the same
holds in three out of five projects. Minor and major con-
tributors are highly dependant from each other (reasonable,
since they sum to the total contributors): for every project
one of them is discarded, while the other one results signifi-
cant, confirming what stated by Bird et al. [3].

6. THREATS TO VALIDITY
Like every empirical study, this one too has threats to

validity that must be considered.
External validity: All the five subjects of this study are

Apache OSS projects that use JIRA with the same conven-

Table 13: Average performance of minor-major threshold dependent metrics
Projects OOB (0.05) OOB (0.10) OOB (0.20) OOB (0.30) OOB (0.40)

Lucene-Solr 44.60% 43.35% 43.60% 44.99% 46.17%
Camel 39.15% 37.75% 39.14% 40.26% 41.23%

Mahout 41.37% 39.89% 39.67% 43.63% 42.83%
Maven 38.25% 38.89% 36.66% 40.81% 42.00%

Zookeeper 33.44% 33.72% 34.82% 36.93% 34.73%

tion and are mainly programmed in Java (we only consider
Java files). Because of that it could be the case that for
different scenarios the described technique leads to differ-
ent or contrasting results (e.g. on proprietary software or
considering a different programming language).

Construct validity. Not all the commits that mention
a JIRA key and id couple are necessarily fixes to the related
bug. Furthermore, in a bug fix we consider all the deleted or
changed lines to spot the corresponding implicated code, but
not all the code touched is necessarily related to the bug fix.
The fact that single commits often include unrelated changes
was already identified as the problem of Tangled Changes [9],
and it is currently an active research topic. This work also
includes all the JIRA related threats, like the fact that some
developers could not adhere to the bug convention.

When determining the implicated files we do not consider
the fact that a file version can be implicated more than one
time. We do that because ultimately our goal is to determine
when a file is defective and not to predict how many defects
will it introduce, but taking into account that factor could
be important: in Lucene-Solr, for example, in the 27.3% of
the cases a file is implicated more than once.

To build our dataset we discard the first commits, the ones
that set up the repository, but we consider all the other out-
liers because we assume that unusual commits are often the
ones that lead to defects; this could have biased some of our
results. We also considered the whole available development
history for every project, and this could lead some metrics to
converge, especially the line based ones: a developer could
be marked as a major contributors even if there are no more
lines authored by him in the file. Further investigation with
different time windows should be done. We also do not per-
form any distinction between test and non-test Java files,
but it could be interesting to consider this factor.

<MISSING: Check the division between validity classes
(external, construct, content etc.)>

7. RELATED WORK
A number of prior studies focused on code ownership and

its relationship with software quality. Bird et al. [3] first
examined this topic defining the concepts of ownership as
proportion of contribution, and of minor and major contrib-
utors. These are the concepts that we use in this work, but
with a different granularity and on different type of software
artifacts. Their results shows that if a Microsoft Windows
code artifact does not have a well defined owner then it is
more defect prone, and the same holds if a lot of minor con-
tributors have worked on it.

Rahman et al. [14] examined the effects of ownership and
authorship on software quality using a fine-grained approach
and computing their metrics on chunks of implicated code.
Our approach to determine software artifacts that contain
implicated code is based on that work. They report findings

similar to the ones reported by Bird et al. and described
above. However, they consider ownership in a different way
and use different metrics.

Focault et al. [6] replicated the study Bird et. al [3] on
seven open-source projects, but using the same granularity
for the metrics and the same threshold to distinguish mi-
nor and major contributors, and changing only the code
artifacts on which the study was focused (Java files and
packages). The outcome is contrasting with the previous
results, it shows no strong correlation between ownership
and defects, but it states that it is more significant when
the metrics are computed on more coarse-grained artifacts.

Another replication of the study from Bird et al. was re-
cently performed by Greiler et al. [7], including also the
intuition from Focault et al. of changing the granularity of
the code artifacts: they used folders and files. This study
was again targeted on Microsoft projects and confirms the
result of [3]. They show that it is also possible to classify
with a high precision defective files using the ownership met-
rics.

None of the studies that consider ownership as intended in
this work [3, 6, 7] tried to compute it on artifacts that con-
tain implicated code. Rahman et al. [14] computed author-
ship on implicated code, but considering only the implicated
lines and not the whole file.

The concept of implicated code was used also by more pre-
vious works, for different purposes and with different names.
Changes that introduce code that causes a fix are called fix-
inducing by Sliwersky et al. [16] and dependencies by Pu-
rushothaman et al. [13].

A number of prior studies also tried to use a different gran-
ularity to compute the ownership metrics or to perform bug
prediction using line-based approaches: Munson et al. [12]
introduced the concept of code churn as a measure of code
line changes, Meng et al. [10] considered fine-grained code
changes over-time to measure the authorship in an accurate
way and Hata et al. [8] computed ownership at a method
level for bug prediction.

For what concerns the bug linking technique, D’Ambros
et al. [5] described a method to identify bug-fixes using in-
formation from the JIRA and Bugzilla issue tracking sys-
tems: our technique is simpler but has more requirements
(i.e. JIRA and the Apache convention, see Section 3.2).

8. CONCLUSION & FUTURE WORK
In this paper we extended the past studies of the effect of

code ownership on software quality. We used the concept of
implicated code to identify defective file versions over the de-
velopment history of five open-source software project, and
we built a model capable of distinguishing them from the
non-defective ones. Our model is built using the Random
Forest technique and it includes an exhaustive set of owner-
ship metrics, considering different granularities (line-based

and commit-based) and different thresholds to distinguish
minor and major contributors, together with some author-
ship (memory-less ownership) and classic code metrics.

All the metrics are computed with a novel approach that
ensures that defective files are really characterized in the
revision where defective code is introduced.

This classifier with all metrics reached an average OOB
of the 23% over the considered projects, with a relative im-
provement of the 22% over a model that consider only classic
code metrics. Our results also show that ownership metrics
computed with line-based granularity are more effective than
the commit-based ones and that changing the threshold used
to distinguish minor and major contributors doesn’t affect
the results in a significant way.

Future research should be done to consider more projects
with programming languages different from Java, and to
study how changing the granularity of the considered ar-
tifacts (e.g. folders or packages instead of files) and the
history time period affects the results.

9. ACKNOWLEDGMENTS
We thank Alberto Bacchelli for his advices and feedback

during the research and Tommaso dal Sasso for his help with
the JIRA issues JSON data.

10. REFERENCES
[1] Financial content: Cambridge university study states

software bugs cost economy $312 billion per year.
http://insight.jbs.cam.ac.uk/2013/financial-content-
cambridge-university-study-states-software-bugs-cost-
economy-312-billion-per-year/. Accessed: January 21,
2016.

[2] Software errors cost u.s. economy $59.5 billion
annually. http://www.abeacha.com/NIST press
release bugs cost.htm. Accessed: January 21, 2016.

[3] C. Bird, N. Nagappan, brendan murphy, H. Gall, and
P. Devanbu. Don’t touch my code! examining the
effects of ownership on software quality. In Proceedings
of the the eighth joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of
Software Engineering. ACM, September 2011.

[4] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[5] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[6] M. Foucault, J.-R. Falleri, and X. Blanc. Code
ownership in open-source software. In Proceedings of
the 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, pages
39:1–39:9, New York, NY, USA, 2014. ACM.

[7] M. Greiler, K. Herzig, and J. Czerwonka. Code
ownership and software quality: A replication study.
In Proceedings of the 12th Working Conference on
Mining Software Repositories, MSR ’15, Piscataway,
NJ, USA, May 2015. IEEE.

[8] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction
based on fine-grained module histories. In Proceedings
of the 34th International Conference on Software
Engineering, pages 200–210. IEEE Press, 2012.

[9] K. Herzig and A. Zeller. The impact of tangled code
changes. In Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on, pages
121–130. IEEE, 2013.

[10] X. Meng, B. P. Miller, W. R. Williams, and A. R.
Bernat. Mining software repositories for accurate
authorship. In Software Maintenance (ICSM), 2013
29th IEEE International Conference on, pages
250–259. IEEE, 2013.

[11] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In Software
Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on, pages 181–190. IEEE,
2008.

[12] J. C. Munson and S. G. Elbaum. Code churn: A
measure for estimating the impact of code change. In
Software Maintenance, 1998. Proceedings.,
International Conference on, pages 24–31. IEEE, 1998.

[13] R. Purushothaman and D. E. Perry. Towards
understanding the rhetoric of small changes-extended
abstract. In International Workshop on Mining
Software Repositories (MSR 2004), International
Conference on Software Engineering, pages 90–94.
IET, 2004.

[14] F. Rahman and P. Devanbu. Ownership, experience
and defects: A fine-grained study of authorship. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 491–500, New
York, NY, USA, 2011. ACM.

[15] F. Rahman and P. Devanbu. How, and why, process
metrics are better. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 432–441, Piscataway, NJ, USA, 2013.
IEEE Press.

[16] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? ACM sigsoft software
engineering notes, 30(4):1–5, 2005.

[17] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: A large
scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 91–100,
New York, NY, USA, 2009. ACM.

