
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Computer Science and Engineering

Scuola di Ingegneria Industriale e dell'Informazione

GitRDone: Enabling Fast Patch

Propagation in Related

Software Repositories

Relatore:

Prof. Stefano Zanero

Correlatore:

Aravind Machiry

Tesi di Laurea di:

Eric Camellini (836576)

Anno Accademico 2015-2016

Ampio Estratto

La di�usione del modello di sviluppo software open-source ha rappresenta-

to una rivoluzione nel settore dell'informatica: incoraggia gli sviluppatori a

collaborare in maniera aperta e libera, e ricerche recenti mostrano che è più

sicuro [18, 54] della sua controparte closed-source. Tuttavia, fare in modo

che le patch che vengono applicate ad un progetto open-source, sul suo re-

pository principale, vengano applicate anche a tutti i repository connessi ad

esso (ad esempio, a tutte le sue fork) è un problema serio [50]: le patch e le

modi�che non possono essere applicate direttamente ad essi, dato che farlo

potrebbe avere e�etti imprevedibili sul codice di tali progetti, che con ogni

probabilità si è diversi�cato da quello originale. In più, gestire le incompa-

tibilità e le dipendenze tra le diverse parti di questi sistemi richiede sforzi

considerevoli [51]. Si consideri, ad esempio, il sistema Android, che è co-

struito attorno ad una fork del kernel Linux: applicare patch provenienti dal

repository principale del kernel su tale fork senza testarne scrupolosamente

gli e�etti potrebbe compromettere alcune funzionalità del sistema nella sua

interezza.

Per risolvere il problema descritto, pur riuscendo a mantenere aggiorna-

to il software, i maintainer e gli sviluppatori che lavorano su fork o progetti

connessi ad un altro progetto devono scegliere accuratamente le patch e le mo-

di�che che vogliono applicare. Questo processo richiede sforzi e tempo [6,56]:

devono analizzare le patch a mano per identi�care quelle da applicare, stu-

diare il codice che modi�cano, capirne gli e�etti, adattarle al codice del loro

progetto e testare che tutto funzioni ancora come previsto dopo che vengono

applicate. Per questi motivi, ci vuole tempo prima che le modi�che vengano

propagate dal repository principale di un progetto a quelli correlati [52] (ad

esempio, Android 7.1.1 è basato sulla versione 3.1 del kernel Linux, mentre

l'ultima versione è la 4.9.8 [2]).

Se si considerano le patch di sicurezza, risolvere questo problema diventa

I

fondamentale: le modi�che relative alla sicurezza del software dovrebbero

essere applicate il più velocemente possibile. Per far in modo che questo

avvenga, sono stati creati dei database di vulnerabilità come quello conte-

nente le CVE (Common Vulnerabilities and Exposures): tali database pos-

sono essere usati come riferimento dagli sviluppatori, in quanto contengono

informazioni sulle più recenti falle di sicurezza che vengono identi�cate nei

vari progetti. Questi database contengono anche riferimenti alle patch cor-

rispondenti a tali falle: sono le patch che i maintainer dovrebbero applicare

immediatamente sui progetti correlati a quello su cui sono state identi�cate

le falle originali. Nonostante l'esistenza di questi database, le patch di si-

curezza vengono tuttora applicate a fork e progetti correlati con un ritardo

importante [10, 29, 38, 42]. Nel 2016, 80 vulnerabilità note (cioè, 80 CVE)

sono state patchate sul sistema Android con più di un anno di ritardo [1];

questo signi�ca che le falle corrispondenti sono rimaste nel sistema per tutto

quel tempo. 76 di queste erano state scoperte e corrette sul repository princi-

pale dei corrispondenti progetti nel 2014, 2 nel 2013 e due nel 2012. Un altro

problema di questi database è che gli sviluppatori potrebbero interpretare

nel modo sbagliato la gravità di una falla per cui sviluppano una patch, e

quindi non richiedere che venga inserita in uno di essi.

Gli approcci che sono stati ideati e sviluppati con lo scopo di facilita-

re questo processo di selezione e applicazione delle patch fanno a�damento

su informazioni come i messaggi dei commit in un repository o le di�eren-

ze riga per riga nel codice sorgente (cioè, il di�) [9, 49, 57]; altri approcci

si basano sulla ricerca di pattern speci�ci [41]. Tutte queste tecniche sono

leggere, veloci e possono essere applicate su progetti di tutte le dimensioni e

complessità. Tuttavia, fanno a�damento su informazione che spesso non è

a�dabile, come i messaggi dei commit [3, 11, 53], e funzionano solo su patch

di dimensioni semplici (questo perché tali tecniche non cercano di analizzare

semanticamente i cambiamenti che una patch apporta, quindi non ne com-

prendono davvero gli e�etti). Altri approcci provano invece a studiare le

di�erenze nel codice a livello semantico utilizzando tecniche di analisi statica

(cioè, static-analysis) [12,13,31,32,48] e, in particolare, esecuzione simbolica

(cioè, symbolic execution) [15,23,37,46], ma so�rono di un problema di�eren-

te: non sono applicabili su progetti grandi e complessi [17]. Altri approcci

ancora, per funzionare, hanno bisogno del build environment del software

analizzato [16], che signi�ca che, in pratica, non è possibile utilizzarli su pro-

getti con un numero elevato di con�gurazioni possibili (ad esempio, il kernel

Linux).

Una soluzione che faciliterebbe il processo di selezione e applicazione del-

le patch è creare un sistema capace di identi�care quali sono quelle che po-

trebbero essere applicate senza bisogno di testare il software, dato che ne

preservano le funzionalità originali. Tale sistema potrebbe essere usato per

identi�care questo tipo di patch sul repository principale di un progetto e

successivamente applicarle in automatico su una fork di destinazione, o per

noti�care i maintainer dell'esistenza di tali patch. In questa ricerca abbiamo

progettato e sviluppato una tecnica di analisi statica capace di determinare

se una data patch su codice sorgente può essere applicata senza bisogno di

essere testata scrupolosamente: questo signi�ca che, molto probabilmente,

tale patch preserva le funzionalità del software. Chiameremo questo tipo di

patch non dannose. Successivamente, abbiamo implementato GitRDone,

un programma basato su tale tecnica.

Il nostro programma, al contrario di quelli sviluppati in precedenti ricer-

che, fa a�damento soltanto sul codice sorgente del �le che viene modi�cato,

prima e dopo l'applicazione della patch analizzata (cioè, non ha bisogno di

messaggi di commit, build environment ecc.), ed è anche, leggero, veloce e

utilizzabile su progetti complessi. Lo abbiamo testato su 39,191 patch reali

estratte da 10 di�erenti repository di progetti kernel ed è stato in grado di

identi�care 8,638 patch non dannose, con una precisione del 96.00%, mo-

strando quindi come potrebbe e�ettivamente essere utile per gli sviluppatori

nel risolvere i problemi descritti sopra. Inoltre, lo abbiamo testato su 191

patch che correggono delle CVE e possiamo a�ermare che una porzione si-

gni�cativa delle patch di sicurezza fa parte di questa categoria di patch non

dannose; questo signi�ca che tale programma può essere utile anche per mi-

gliorare la sicurezza del software. In più, mostriamo anche come può essere

usato per identi�care delle patch di sicurezza per le quali non esiste una CVE

corrispondente: abbiamo trovato diverse istanze reali di tale problema, dove

le corrispondenti falle sono ancora presenti in alcuni progetti correlati a quelli

su cui le abbiamo individuate. Rilasceremo il codice sorgente di GitRDone

dopo la pubblicazione di questo lavoro.

Abstract

Despite the e�orts of software maintainers, patches on open-source reposito-

ries are propagated from the main codebase to all the related projects (e.g.,

forks) with a signi�cant delay. Previous work shows that this is true also

for security patches, for which it represents a critical problem. Vulnerability

databases (e.g., CVEs) were born to speed up the di�usion of critical patches;

however, CVE patches are still applied with a delay and some security �xes

lack corresponding CVE entries. Because of this, project maintainers could

miss security patches when upgrading software, which is a huge problem.

In this paper we are the �rst to provide a de�nition of non-disruptive

patches (ndps). An ndp is a patch that should not disrupt the original func-

tionality of the program, meaning that it can be applied with a minimal

testing e�ort; we argue that most of the security �xes fall into this category.

Furthermore, we show a technique to identify ndps and implement GitR-

Done, a tool based on such a technique that works just by analyzing the

source code of the original and patched versions of a �le.

We run GitRDone on 39,191 patches, spanning over 10 di�erent kernels

repositories, and on 191 Android and Linux CVE patches. Results show that

it can identify ndps with 96.00% precision and that most of the CVE patches

are ndps. In addition, GitRDone identi�ed patches that �x vulnerabilities

that lack a CVE; 5 of these are still unpatched in di�erent vendor kernels.

V

Acknowledgements

I would like to thank Professors Stefano Zanero and Federico Maggi for giving

me the opportunity to go to the The Computer Security Group at UCSB for

the internship during which I worked on this project, and for their expert

advice and encouragement throughout my Master's degree. I would also like

to thank Professors Giovanni Vigna and Christopher Kruegel for accepting

me in their research laboratory and advising me during the time I spent there:

doing research with them has been an honor and a privilege. Furthermore,

I would like to thank all the people of the Seclab: they have been amazing

coworkers and friends. In particular, special thanks go to Aravind Machiry,

who supervised me throughout the whole experience, for his support and

encouragement: without him, this project would neither have been started

nor ever completed.

VII

Contents

1 Introduction 1

2 Motivation 5

2.1 Background . 5

2.1.1 Software Security Overview 5

2.1.1.1 Vulnerabilities and Exploits 5

2.1.1.2 Software Patching 6

2.1.1.3 Vulnerability Disclosure 6

2.1.2 The Open-Source Software Model 7

2.1.3 Source Code Di� . 7

2.1.4 Source Code Analysis 8

2.1.4.1 Static Analysis 8

2.2 Problem Statement . 10

2.3 State of the Art . 11

2.3.1 Vulnerability �nding and exploitation 11

2.3.2 Easing the patching process 12

2.3.3 Software Evolution . 12

2.3.4 Source-code Patches Analysis 13

2.4 Goals . 13

2.5 Contributions . 14

3 Approach 15

3.1 Non-Disruptive Patches . 15

3.1.1 Formal De�nition . 16

3.1.2 Identifying ndps . 19

3.1.2.1 Non-Conditional Statements 20

3.1.2.2 Modi�ed Conditional Statements 20

3.1.2.3 Inserted Conditional Statements 20

IX

3.1.2.4 Deleted Conditional Statements 21

3.2 GitRDone Design . 22

3.2.1 Preprocessing . 22

3.2.2 Parsing . 22

3.2.3 Fine-Grained Di� . 23

3.2.4 Patch Analysis . 23

3.2.4.1 Identi�cation of Error Basic Blocks 24

3.2.4.2 Non-Conditional Statements 25

3.2.4.3 Inserted Conditional Statements 26

3.2.4.4 Modi�ed Conditional Statements 27

3.2.4.5 Deleted Conditional Statements 27

3.2.5 Additional Heuristics 27

3.3 Alternative Ideas and Solutions 28

4 Implementation Details 31

4.1 Input handling and Preprocessing 31

4.2 Parsing and Joern Extensions 32

4.2.1 Functions AST Extraction 32

4.2.2 CFG and Basic Blocks 32

4.2.3 Reaching De�nitions 33

4.2.4 Type Inference . 34

4.3 Functions Di� . 35

4.3.1 Visualization . 37

4.4 Patch Analysis . 37

5 Evaluation 41

5.1 Experiment 1: Large-Scale Evaluation 42

5.2 Experiment 2: Evaluation on CVEs 46

5.3 Experiment 3: Zero-Days in Vendor Kernels 49

5.4 Performance Considerations 50

5.5 Summary of Results . 50

6 Conclusions 51

6.1 Limitations . 51

6.2 Future Work . 52

References 55

List of Figures

2.1 Example of an AST with the corresponding source code. Every

node contains its type followed by its value, that can be empty. 9

3.1 Control �ow graph of the patched program from Figure 3.2. . 16

3.2 Example of a non-disruptive patch. 18

3.3 Flow of the actions performed by GitRDone. 21

3.4 An ndp identi�ed by our tool on the main Linux kernel repos-

itory (commit 742dcd115cb523f). It shows a case where the

information provided by GumTree is needed to understand the

semantics of the change. 24

4.1 Pseudocode of the recursive extraction of statements whose

defs can reach uses of another given statement. 35

4.2 Java code to extract the GumTree mappings and actions, given

two ITrees. 36

4.3 Example code corresponding to the ASTs shown in Figure 4.5

and Figure 4.6. 36

4.4 Example code corresponding to the ASTs shown in Figure 4.7

and Figure 4.8. 37

4.5 Example of original AST with di� information; the corre-

sponding source code di� is shown in Figure 4.3, the new AST

in Figure 4.6. 38

4.6 Example of new AST with di� information; the corresponding

source code di� is shown in Figure 4.3, the original AST in

Figure 4.5. 38

4.7 Example of original AST with di� information; the corre-

sponding source code di� is shown in Figure 4.4, the new AST

in Figure 4.8. 39

XI

4.8 Example of new AST with di� information; the corresponding

source code di� is shown in Figure 4.4, the original AST in

Figure 4.7. 39

5.1 Distribution of the size of all the commits studied by GitR-

Done. 42

5.2 Distribution of the size of the ndps identi�ed by GitRDone. . 42

5.3 A security patch identi�ed as ndp by GitRDone on the main

Linux kernel repository (commit 3e0a3965464505). It does not

have a corresponding CVE ID. 44

5.4 A security patch identi�ed as ndp by GitRDone on the main

Linux kernel repository (commit ebfd7532e98581). It does not

have a corresponding CVE ID. 45

5.5 An ndp identi�ed by our tool on the main Linux kernel repos-

itory (commit 46d4e7479252d3). 47

5.6 Real integer over�ow patch identi�ed as ndp by GitRDone

(CVE-2014-9795 from July 2016 Android security bulletin). . . 48

5.7 Real CVE patch identi�ed as ndp by GitRDone (CVE-2016-

2184 patched by Linux kernel commit 0f886ca12765d2). 48

List of Tables

5.1 Studied projects and commits. (refer to Table 5.2 for project

names). 43

5.2 URLs of the studied repositories (refer to Table 5.1 for project

names). 43

5.3 Large-scale experiment results (refer to Table 5.1 for project

names and information). 44

5.4 Results of the manual checking performed on the commits an-

alyzed in the �rst experiment (see Table 5.3). 44

5.5 CVE patches experiment results. 44

5.6 Statistics of the manual checking results shown in Table 5.4. . 45

XIII

List of Abbreviations

IA Information Assurance

OSS Open-Source Software

OS Operating System

AST Abstract Syntax Tree

CFG Control Flow Graph

BB Basic Block

NDP Non-Disruptive Patch

CDG Control Dependency Graph

DDG Data Dependency Graph

UDG Use-Def Graph

API Application Programming Interface

XV

Chapter 1

Introduction

The di�usion of the open-source software (OSS) model represented a revo-

lution for the software industry: it encourages open and free collaboration,

and prior research shows that it is also more secure [18, 54] than its closed

source counterpart. However, patching all the repositories related to an OSS

project (e.g., all its forks), starting from the patches applied on the main

repository, is a major problem [50]: patches and changes cannot be applied

just as they are because this would have unpredictable e�ects on the code

bases of these related projects, that most likely diverged from the original

one over time. Furthermore, dealing with incompatibilities and dependencies

between the divergent parts of the systems requires a lot of e�ort [51] (e.g.,

Android relies on a Linux kernel fork: propagating patches from the kernel

main repository on this fork without a complete and thorough testing could

a�ect some Android features).

To solve the described problem and still keep software up to date, software

developers and maintainers that work on projects related to another project

need to accurately select and thoroughly test the patches and changes that

they want to apply. This is a process that requires time and e�ort [6, 56]:

they have to manually go through the changes to �nd the ones that need to be

applied, analyze the code changed, understand the e�ects of these changes,

adapt the patch to their code base and test that everything still works as

expected after its application. For these reasons changes take a lot of time

to propagate from the main repository of a project to the related ones [52]

(e.g., Android 7.1.1 is built on the version 3.10 of the Linux kernel, while the

latest one is version 4.9.8 [2]).

When considering security patches this problem becomes particularly crit-

2 CHAPTER 1. INTRODUCTION

ical: security-related �xes should be always applied as fast as possible. In

order to ease and speed this process, vulnerability databases such as the CVE

(Common Vulnerabilities and Exposures) were born: they can be used as a

reference to remain up to date on the latest security issues that are iden-

ti�ed on a certain project. These databases provide also references to the

patches corresponding to a certain CVE, the ones that maintainers of related

projects should immediately apply. However, vulnerability databases are not

enough: security �xes are still applied on project forks with a signi�cant

delay [10, 29, 38, 42]. In the year 2016, 80 known vulnerabilities (i.e., CVEs)

were patched on Android with more than one year delay [1], meaning that

they remained unpatched in the Android code base for a signi�cant amount

of time. 76 of these were discovered and patched on the main repositories of

their project in 2014, two in 2013 and two in 2012. Furthermore, developers

can misinterpret the severity of a bug that they �x and fail to request a an

entry in one of these vulnerability databases.

State-of-the-art approaches that can be used to ease the process of cherry-

picking and applying changes rely information such as commit messages

or source-code di� [9, 49, 57], while other approaches look for speci�c pat-

terns [41]. All these techniques are lightweight, fast and scalable (i.e., suitable

for large code bases). However, they rely on information that is often unreli-

able, like commit messages [3, 11, 53], and they work only on simple patches

(i.e., without trying to semantically understand the source-code changes it is

di�cult to adapt an approach to complex patches). Other approaches try in-

stead to study the semantic di�erences introduced by a change through static-

analysis [12,13,31,32,48] and, speci�cally, symbolic execution [15,23,37,46],

but su�er from scalability issues [17]. Some other approaches make use of the

build environment of the software [16], meaning that they cannot be applied,

in practice, on highly con�gurable projects like the Linux kernel.

A solution that would ease the processes of selecting and applying patches

and changes is to develop a system that can identifying the ones that is pos-

sible to apply without the need for subsequent testing, because they preserve

the original functionality of the software. Such a tool could be used to iden-

tify this kind of patches on the main repository of a project and automatically

apply them on a target fork, or to notify its maintainers about their existence.

In this work we design a static analysis technique capable of determining if a

given source code change could be applied with minimal testing: this means

that it is most likely functionality-preserving. We call the patches identi�ed

3

by our technique non-disruptive. We then implement GitRDone, a tool

based on this technique.

Our tool, in contrast with previous work, relies only on the source-code

of a the updated �le before and after the patch (i.e., it does not need commit

messages, build environment, etc.), and it is also fast, lightweight and scal-

able. We evaluate it on 39,191 real commits spanning over 10 kernel projects

and identify 8,638 non-disruptive patches with a 96.00% precision, showing

how it can help developers in solving the problems described above. We then

test it on 191 CVE patching commits and argue that a signi�cant portion of

all security-related �xes falls under this category of functionality-preserving

patches, meaning that a tool like that would also improve the security of

the software. Furthermore, we show how it can be used to identify security

�xes for which there is no corresponding CVE: we found instances of these

patches on the Linux kernel and we found some of these to be still unpatched

on some of its forks. We will release the source code of GitRDone at the time

of publication.

The outline of this work is as follows: in Chapter 2 we give an overview of

the background and of the related work, and then explain in details the prob-

lem that we want to solve and our goals and contributions; in Chapter 3 we

give a formal de�nition of non-disruptive patches, we describe a technique to

identify them and show how GitRDone does it in practice (implementation

details are shown in Chapter 4). Chapter 5, then, shows how we evaluated

our tool, while in Chapter 6 we list its limitations, talk about possible future

work and conclude.

Chapter 2

Motivation

2.1 Background

This section gives an overview of the concepts needed to understand the

remaining part of this work; we only assume the reader to have a basic

knowledge of the fundamentals of programming and computer science.

2.1.1 Software Security Overview

We now give an overview of the main software security concepts needed to

understand what we do in this work.

2.1.1.1 Vulnerabilities and Exploits

A software defect (i.e., a bug) is called vulnerability if it allows to violate

or reduce the software's information assurance (i.e., IA: protection of the

user data and of its con�dentiality, integrity and availability); any potential

violation of the IA is called threat.

A way to use a vulnerability to cause unwanted behavior in the vulner-

able software and to violate its IA is called exploit : the mere presence of a

vulnerability does not always mean that the software can be violated, since

there could be no way to exploit it. We call attacker whoever may attack the

software (i.e., intentionally use one or more vulnerability exploits in order to

violate its IA). Attackers are threats, according to our de�nition, but note

that there could be also threats that are not attackers (e.g., too many clients

talking to a server pose a threat to the software availability, but it is not

6 CHAPTER 2. MOTIVATION

their intention to do it).

2.1.1.2 Software Patching

A patch is an update designed to �x or improve a speci�c software; patches

that �x one or more vulnerabilities or that improve the security of a soft-

ware are called security patches. When the developers of a speci�c software

become aware of a new vulnerability they should develop and distribute the

corresponding security patch as soon as possible. One of the main problems

of patching vulnerabilities is that not all the versions or instances of the

vulnerable software are patched immediately (e.g., in case of Android appli-

cations, users could perform updates only once in a while and miss security

�xes).

2.1.1.3 Vulnerability Disclosure

Computer security scientists and hackers agree on the fact that it is their

social responsibility to notify the public about critical vulnerabilities and to

disclose the corresponding details. However, vulnerability disclosure remains

a debated topic, and di�erent disclosure policies have been proposed:

• Full disclosure: After a vulnerability is discovered, its details are pub-

lished as soon as possible, so that victims and attackers gain the same

knowledge at the same time. The problem of this approach is that also

the developers of the vulnerable software become aware of the vulner-

ability at the time of disclosure: this does not allow them to patch it

in time.

• Responsible disclosure: Who discovers a vulnerability reports it to the

vendor or maintainers and agrees with them on a period of time after

which the vulnerability will be disclosed; this delay should allow the

developers to patch it before it becomes public.

• Non disclosure: In this model, no information about vulnerabilities is

disclosed whatsoever. This non-policy is applied by malicious hackers

that have interest in selling exploits, or by vendors that think that

information about vulnerabilities only helps the attackers.

Researchers and hackers also agree on the fact that information about vul-

nerabilities should be disclosed also when they are found directly by the vul-

2.1. BACKGROUND 7

nerable software vendor or maintainers: vulnerabilities should not be patched

silently. However, once a vulnerability is disclosed, attackers become aware

of it and can try to exploit it: this means that every unpatched instance

of the software becomes potentially vulnerable to a possible publicly known

exploit.

2.1.2 The Open-Source Software Model

The OSS model is a software development model that encourages open and

free collaboration. The source code of an OSS project must be publicly

available (e.g., the most common way to do it nowadays is to use a repository

such as GitHub1); Given an OSS project, anyone is allowed to:

• Freely make use of it, following its licensing guidelines.

• Start a new project based on it; this practice is called forking, and the

new code base is called fork (e.g., the Android OS is based on a fork

of the Linux Kernel).

• Contribute to it (i.e., nowadays the most common way to do it is to

fork the project, make changes and then submit a pull request that will

then be reviewed by the maintainers).

Developers use version control systems such as git2 to make changes to

an open-source software project. Changes are usually applied locally (i.e.,

on the version of the project present only on the machine where changes are

made) in batches, called commits. Sets of commits are then pushed on the

public source-code of the project, often through the pull requests model (i.e.,

model where changes are not direcly pushed on the public source code, but

are �rst reviewed by the mainatiners).

2.1.3 Source Code Di�

The most common way to show di�erences between two �les (e.g., to study

a source code patch) is to use the diff3 utility, or other tools based on it

(e.g., git diff4). Such utilities calculate and show line-based di�erences

1https://github.com/
2https://git-scm.com
3https://www.gnu.org/software/diffutils/
4https://git-scm.com/docs/git-diff

https://github.com/
https://git-scm.com
https://www.gnu.org/software/diffutils/
https://git-scm.com/docs/git-diff

8 CHAPTER 2. MOTIVATION

between two given �les (i.e., inserted and deleted lines), based on the Hunt

algorithm [27] or variants of it. The output itself is often called di�, too.

These tools can also be used to generate an edit script : a sequence of ac-

tions necessary to transform the �rst �le into the second one. A di�, alongside

the modi�cations, usually displays some unchanged lines, in order to provide

a context to the patch. Every group of added or deleted lines surrounded by

the corresponding context in the output is called hunk. Figure 3.2 contains

an example of di� with four hunks; in this particular case, all the unchanged

lines surrounding the hunks are displayed, while usually the context shown

around each group of changes is �xed (e.g., one line above and below every

hunk, like in the di� in Figure 5.5).

2.1.4 Source Code Analysis

Di�erent program analysis techniques can be used to analyze computer soft-

ware in order to understand its behavior in a speci�c situation or regarding

a speci�c property (e.g., the presence of vulnerabilities). The analysis can

be performed with or without executing the program (i.e., dynamically and

statically, respectively). In this work we only refer to static analysis tech-

niques.

2.1.4.1 Static Analysis

Static analysis is the process of analyzing programs without executing them.

It could rely on simple techniques such as pattern-matching (i.e., looking for

speci�c token patterns in the code) or on formal methods such as symbolic

execution. Most of the static analysis techniques are performed on machine-

readable representations of the source code such as the abstract syntax tree

(AST) or the control �ow graph (CFG). We will give an overview of these

two representations, of the symbolic execution technique, and of some other

concepts needed to understand the remaining parts of this work.

The CFG is a graph that represents all the paths that the program might

traverse during its execution. Figure 3.1 shows an example of the CFG of

a simple program. Most of the static analysis techniques rely on this repre-

sentation. Usually, every CFG node contains a basic block (i.e., a sequence

of statements that are always execuded exactly once, in order, whenever the

�rst one is executed). The CFG of a program, or function, is often used to-

gether with the corresponding control dependency graph (CDG): a directed

2.1. BACKGROUND 9

Figure 2.1: Example of an AST with the corresponding source code. Every

node contains its type followed by its value, that can be empty.

graph that represents control dependency of the statements towards each

other. A statement S1 has a control dependency on a preceding statement

S0 if the execution of S0 determines whether S1 is executed or not (e.g., all

the statements inside a loop have a control dependency on the loop instruc-

tion). The CFG and the CDG are often used also to extract information

about dominators ; in this work we use the concept of postdominance: a node

n1 is a post-dominator of a node n0 if all the paths that go from n0 to the end

of the CFG (i.e., the exit node) must go through n1. A post-dominator of n

that is not post-dominator of other post-dominators of n is called immediate

post-dominator.

The AST is a tree that represents the syntactic structure of the source

code. The nodes of this tree usually have a type (e.g., if-then-else construct,

user-de�ned identi�er, etc.) and a value (e.g., the value of an identi�er node).

Figure 2.1 show an example of AST with the corresponding code. It is called

abstract because it does not represent every detail explicitly (e.g., the one in

the example does not display curly brackets, and it does not explicitly show

which subtree of the IF construct identi�es the then or the else, since it

can be understood by looking at the order of the nodes).

Symbolic execution is a technique used to represent the value of the vari-

10 CHAPTER 2. MOTIVATION

ables at a speci�c point in the code using mathematical expressions. These

expressions are sets of constraints on the variable values, collected while an-

alyzing the program (i.e., its CFG, usually) from the entry point to the point

speci�ed (e.g., they can be collected from assignments, conditional expres-

sions or other statements that constrain the values that a variable can assume

further in the program). The inputs of the program, on which the constraints

are imposed, are symbolic values. This technique is a possible way to study

the runtime behavior of a program without actually executing it. The main

limitation of this technique is the path explosion [17]: symbolically executing

all the possible paths that a program can traverse does not scale to large

software.

2.2 Problem Statement

The open-source software (OSS) model revolutionized the software indus-

try and prior research shows that it is more secure [18, 54] than its closed-

source counterpart. However, propagating changes and patches from the

main repository of an open-source software to all the related projects (e.g.,

forks) is a major problem [50]. Applying these changes just as they are could

have unpredictable e�ects because the code bases of the related projects di-

verged from the original one over time, and dealing with dependencies and

incompatibilities between the divergent portions of the systems requires a lot

of e�ort [51]. For example, Android depends on a Linux kernel fork, and up-

grading it with patches from the kernel main repository without thoroughly

testing their e�ects could a�ect some Android features.

To avoid this problem, and still be able to keep their software up to date,

the maintainers of the related projects need to cherry-pick and test all the

changes that they want to apply, process that requires a lot of time and

e�ort [6, 56]: they have to manually �nd suitable patches, look at the code

they change, understand its behavior, adapt them to their code base and

check that the whole system still works as expected after their application.

For these reasons changes on the main code base of a project are usually

applied on the related software with a signi�cant delay [52]: Android 7.1.1,

for example, is based on Linux kernel 3.10, while the latest release of the

kernel is version 4.9.8 [2].

This problem becomes critical when we consider security patches: in these

cases the �xes should propagate to all the code bases as soon as possible.

2.3. STATE OF THE ART 11

Vulnerability databases such as the CVE (Common Vulnerabilities and Ex-

posures) were born to facilitate this process: project maintainers can take

them as a reference to know which security-related patches they need to ap-

ply, without having to manually �nd them. Despite the existence of these

databases, security patches still take a lot of time to propagate to all the

project forks [10,29,38,42]. In the year 2016 the Android maintainers patched

76 publicly known vulnerabilities (i.e., CVEs) from the year 2014, two from

2013 and two from 2012, which means that 80 disclosed vulnerabilities re-

mained unpatched in the Android code base for more than one year [1]. This

attracted considerable public interest; Twitter user @RatedG4E tweeted on

August 2016 [4]:

�Good to see Android/Nexus devices start to pick up patches available two

years ago, check `CVE-2014- ' in August Android Sec bulletin.�.

Furthermore, as we will show in this study, it is possible that the main-

tainers of a project misinterpret the severity of a patched bug and fail to

request a corresponding entry in a vulnerability database(e.g., a CVE ID).

An ideal solution that would help the maintainers in this process of se-

lecting and applying changes is to build a tool capable of identifying the ones

that can be applied without the need for subsequent testing, because they

preserve the original functionality of the software. We call them functionality-

preserving patches.

2.3 State of the Art

Source code changes and patches as research topics received a lot of attention

in the past decade, due to the fact that upgrading software and �xing bugs

are costly and time-consuming activities that require a lot of human e�ort.

This section covers a comprehensive portion of prior work on these topics.

2.3.1 Vulnerability �nding and exploitation

Finding unpatched code clones is what most of the prior research on patches in

the security �eld focused on [29,34,35]. VulPecker [35] extracts features from

the vulnerability patch di� and uses code similarity to �nd clone instances of

vulnerable code, ReDeBug [29] uses a syntax-based clone detection approach

12 CHAPTER 2. MOTIVATION

based on tokens, and Li et al. [34] use static and dynamic analysis techniques.

In this work we also show how our tool could be used as a vulnerability �nder

(see Section 2.5); however, we do not look for code clones but for instances

where the function a�ected by a patch is still equal to the unpatched version.

Brumley et al. [14], instead, show how to generate exploits for a vulnerability

starting from the corresponding patch.

2.3.2 Easing the patching process

Prior research has been very active in designing approaches and building

tools to ease and speed the process of patching. For example, Nistor et

al. [44] focus on �nding performance bugs, Son et al. [55] on repairing access

control bugs in web applications, Andersen er al. [8] on easing the process

of patching collateral evolutions, and other studies on helping developers in

applying systematic changes [39,59]. Most of the state-of-the-art techniques

that aim at easing or automating the process of patching, like the ones listed

above, target only speci�c bug classes [40], while in this work we de�ne and

identify a set of changes that we think could be easily automated, without

focusing on a speci�c class. Long et al. [36], in contrast with the previously

mentioned studies, use machine learning to model correct code and generate

generic defects �xes, but do not focus on propagating existing patches like

we do in this study. Similarly to what we do in this work, Kreutzer et al. [30]

use AST di�erencing on changes; however, they use it to extract metrics

and then use these metrics to cluster the changes by similarity, and not to

determine their e�ect on the software.

2.3.3 Software Evolution

Many studies on source code changes perform large-scale analysis on software

repositories to gain insight into the dynamics of software evolution (i.e., we

can group them in the so called Mining Software Repositories �eld [25]).

Giger et al. [24] extract source code changes features and use data mining to

perform software defects prediction, while Perl et al. [45] built VCCFinder,

a tool that leverages code metrics and patch features (e.g., keywords in com-

mits) to identify vulnerability-contributing changes. In this work we do not

use data mining or machine learning techniques and analyze every commit

without collecting external information: we mined software repositories only

2.4. GOALS 13

to extract the changes to-be-used for the evaluation (see Section 5.1).

2.3.4 Source-code Patches Analysis

Existing approaches to analyze source-code patches rely on commit-related

information such as code di� or commit messages [9,49,57], or look for spe-

ci�c patterns [41]: these tools have the advantage of being fast, lightweight,

scalable and suitable to be used on large code bases. However, either they

only match simple patches or they analyze information that often cannot be

considered reliable: commit messages are not always a good way to under-

stand the e�ect of the changes [3, 11,53].

Other techniques that try to understand the semantic di�erence intro-

duced by a patch using static-analysis [12,13,31,32,48] and symbolic execu-

tion [15, 23, 37, 46] su�er from scalability issues [17]. Some approaches also

require the software's build environment [16], restricting their practicality

and adaptability in complex software like the Linux kernel, that has many

possible con�gurations [5].

In this work we build a fast, lightweight and scalable tool that analyzes

patches trying to undersatand their e�ect on the behavior of the program,

and that does not require information other than the source code before and

after the patch (i.e., no build environment or commit messages are needed).

2.4 Goals

A tool that can identify functionality-preserving patches could be used to

monitor the main repository and automatically apply this kind of patches

on a target fork. Alternatively the tool could be used to build a variant of

the git rebase5 feature that applies only those patches mentioned above. In

this paper, we argue that a signi�cant portion of all security-related �xes fall

under the category of functionality-preserving patches.

To be e�ective and usable on large code bases, such a system should:

• Only rely on the original and patched version of the modi�ed source

code �le, without any other additional information (e.g., commit mes-

sage, build environment etc.).

5https://git-scm.com/docs/git-rebase

https://git-scm.com/docs/git-rebase

14 CHAPTER 2. MOTIVATION

• Be fast, lightweight and scalable.

The goal of this work is to design, implement and evaluate a static analysis

technique made speci�cally to target source code changes and to identify

patches that could be applied with minimal testing because they are most

likely functionality-preserving: we call them non-disruptive patches. This

technique should join the positive aspects of the di�erent previous approaches

and satisfy the requirements listed above.

2.5 Contributions

Speci�cally, these are the actual contributions of this work:

• We give the �rst formal de�nition of non-disruptive patches and design

a general technique to identify them.

• We implement GitRDone, a system based on this technique, that

can work taking as input only the source code of the original and the

patched �le.

• We evaluate GitRDone on a 39,191 commits spanning over 10 di�er-

ent kernels repositories, and on 191 CVE patching commits.

• We identify 8,638 non-disruptive patches and show that GitRDone

could help developers in the process of selecting and testing changes

and speed-up the propagation of security �xes. Some of these patches

are Linux kernel security �xes for which we could not �nd any linked

CVE and that are still unpatched in di�erent kernel forks.

Unlike all previous work, our approach is the �rst that focuses on deter-

mining which of the changes made on a given software could be propagated

to related projects with minimal e�ort, without pre-de�ning speci�c types

of changes or semantic characteristics that it should target (i.e., we do not

just target patches that patch a vulnerability, introduce a bug, etc.). We will

release the source code of GitRDone at the time of publication.

Chapter 3

Approach

In this chapter, we �rst give a formal de�nition of the kind of source-code

patches that we want to identify and design a technique to do it (Section 3.1).

In Section 3.2, then, we show the details of GitRDone, the tool that we

developed based on the technique mentioned before.

3.1 Non-Disruptive Patches

Determining that a given change preserves the original program functionality

requires a full understanding of the program's dynamics, which is a task that,

in the general case, can be reduced to the halting problem. However, our

intuition is that if a patch satis�es certain criteria, then it can most likely

be applied safely because it does not disrupt the original functionality of the

software. We de�ne such patches as non-disruptive patches (ndp).

Section 3.1.1 provides a detailed description of the criteria that a patch

must satisfy to be identi�ed as an ndp. A C language example of an ndp is

shown in Figure 3.2, in a standard di� format (i.e., where + and − indicates

inserted and deleted lines, respectively). Note that, while we display exam-

ples using this di� format, our approach interprets the changes in a di�erent

way (i.e., not only as deleted and inserted lines, see Section 3.1.1). In the ex-

ample, the inserted call statements (i.e., printk and kfree) cannot disrupt

the functionality, the error return under !req->buff (i.e., under the deleted

condition) is still correctly handled by a preceding if statement, thanks to

an insertion, and req->len > MAX_MSG_SIZE is the insertion of a previously

missing length check (i.e., a �x). Figure 3.1 represents the Control �ow graph

16 CHAPTER 3. APPROACH

(CFG) after the application of this example patch: underlined text indicates

the pieces of code inserted, while right and left children of each basic block

are true and false branches, respectively.

3.1.1 Formal De�nition

Figure 3.1: Control �ow graph of the patched program from Figure 3.2.

First, we de�ne some notions that will be used throughout this section:

• State s of a program: the snapshot of the program's data segments,

including global variables, and runtime heap and stack. S indicates

the set of all the possible states of a program.

• f denotes a function and any subscript to it identi�es its patched ver-

sion. For example: fp indicates the function f after applying the patch

p.

• Error-handling basic blocks (BBerr): basic blocks of the control-�ow

graph of a function that are part of its error-handling functionality.

In Figure 3.1, BB2, BB5, and BB6 are error-handling basic blocks.

Note that all the post-dominator basic blocks of an error-handling basic

3.1. NON-DISRUPTIVE PATCHES 17

block are also error-handling basic blocks (no such blocks are present

in Figure 3.1).

• Guarding basic block (BBguard): we de�ne the non error-handling basic

block that is the immediate pre-dominator of a BBerr as a guarding

basic block, and the corresponding condition as a guarding condition

(Cguard). Depending on whether the BBerr is part of its true branch

or false branch, the corresponding guarding condition is denoted as a

positive (CT
guard) or negative (C

F
guard) guard, respectively. In Figure 3.1,

BB1 and BB4 are guarding basic blocks with positive guard, while BB3

is a guarding basic block with a negative guard.

• We use the notation s ↪→ f to indicate that a state s �ows through a

function f , which means that starting from the entry basic block of f

with state s, none of the BBerrs of f can be reached. In other words,

s represent a valid starting state for the function f (i.e., a state that

does not result in an error).

• = indicates a set of source code statements. =f and =fp indicate the

set of source code statements in f and fP , respectively.

• trace(s, f) indicates the set of source code statements of the function f

that are executed when the function is run with starting state s. The

following relation trivially holds for every function: trace(s, f) ⊆ =f

(i.e., a statement, to be executed, must be present inside the executed

function). Note that when we say that two traces are the same we

mean that the order of the statements within them must also be the

same. However, when referring to the trace as sets (e.g., checking if a

statement x is present in the trace), the order is not relevant.

Using these notions, we want to de�ne the concept of non-disruptive

patches (ndps), a class of patches that do not disrupt the original function-

ality of a program and that can be most likely applied with minimal testing.

We say that a statement is modi�ed by p if its code is changed but the

statement itself is not moved with respect to the other ones, not considering

the ones that are inserted and deleted (i.e., one should check the relative

position of the statements and not the line numbers). We assume that if a

patch modi�es the statements in a way such that the execution trace of f

and fp is the same, when they start with the same state, then it means that

18 CHAPTER 3. APPROACH

int process_req(struct usr_req *req) {

void *buf;

- if(!req) {

+ if(!req || !req ->buff || req ->len > MAX_MSG_SIZE) {

return -EINVAL;

}

buf = kzalloc(req ->len + HDR_SIZE , GFP_KERNEL);

if(buf) {

setup_hdr ((struct kmsg*)buf);

- if(!req ->buff) {

- return -EINVAL;

- }

if(copy_from_user(buf + HDR_SIZE , req ->buff ,

req ->len)) {

+ kfree(buf);

return -EINVAL;

}

send_kmsg ((struct kmsg*)buf);

+ printk ("%s, msg sent\n", __func__);

return 0;

}

return -ENOMEM;

}

Figure 3.2: Example of a non-disruptive patch.

the patch does not disrupt the functionality. However, we want to cover also

patches that insert, delete or move statements.

To include deletions we relax the assumption saying that the trace should

be the same, excluding the statements not present anymore after the patch:

this is reasonable because if deleting a statement does not a�ect all the rest

of the trace then its deletion is not disruptive. To consider also insertions

and moves, we make another relaxation and say that the statements that

are in the new trace should also be in the original trace only if they are

actually present in the source code of the original function: this is reasonable

because if the trace contains the same statements despite insertions, deletions

and modi�cation it means that the patch was not disruptive. To make this

last relaxation more reasonable, we also enforce the fact that no new states

should �ow through the function, as these could make the code behave in

a di�erent way. The concepts de�ned above are formalized by Equation 3.1

and Equation 3.2, that de�ne the criteria that a patch p , to a function f ,

needs to match in order to be ndp.

∀s ∈ S | (s ↪→ fp)→ (s ↪→ f) (3.1)

3.1. NON-DISRUPTIVE PATCHES 19

∀s ∈ S.(∀x ∈ trace(s, fp) | (x ∈ =f)→ (x ∈ trace(s, f))) (3.2)

Similarly, we say that a patch p is non-disruptive for a program if Equa-

tion 3.1 and Equation 3.2 hold for all the functions in it.

Note that this de�nition holds for the case of an empty patch, where

fp = f . We assume the patches that satisfy these criteria (i.e., ndps) to be

most likely functionality-preserving, because of the reasoning outlined above;

however, patches that do not satisfy the above criteria could still be such that

they preserve the original functionality. Section 3.1.2 describes the a method

to identify ndps as de�ned above.

3.1.2 Identifying ndps

In Section 3.1.1 we de�ned ndps: a class of patches that are most likely

functionality-preserving. However, running a software and check its trace

for all the possible states is not practical. In the remaining part of this

section, we show a general technique to identify if a given patch is an ndp,

that works by analyzing one by one the statements that the patch a�ects

(i.e., modi�es, inserts, deletes or moves). Some of the steps of this technique

are implementation-speci�c: Section 3.2 shows how we implemented it in our

system.

Consider a given patch p, with f and fp being the targeted function before

and after applying the patch, respectively. The �rst step of our technique is

to identify all the error-handling basic blocks (BBerrs) in f and fp. Then

the following heuristic is applied: all the changes to the statements within

BBerrs are discarded (i.e., not considered for the following steps). This is

based on the assumption that any change to error basic blocks does not

disrupt the original functionality (i.e., it just results in better or adjusted

error-handling).

The remaining statements a�ected by p are then analyzed one by one as

described below, depending on their class (e.g., conditional or non-conditional)

and on the type of change that a�ects them. If all the changes to all these

statements are identi�ed as non-disruptive by one of the following steps then

the patch p is identi�ed as an ndp, otherwise it is considered disruptive.

20 CHAPTER 3. APPROACH

3.1.2.1 Non-Conditional Statements

If a non-conditional statement does not perform memory writes (i.e., writes

include modi�cations to the value of a variable), then the changes that af-

fect it (i.e., delete, insert or modify it) are considered non-disruptive. For

example, any change that a�ects a statement that just calls the C function

printf is non-disruptive, unless the format string contains %n, which results

in a write. For a�ected statements that perform writes, one could apply

implementation-speci�c analyses or heuristics to determine if the e�ects of

the changes are disruptive or not (see Section 3.2 to see how what we do in our

system). For example, the insertion of certain statements that perform write

operations could be considered non-disruptive (e.g., kfree in Figure 3.2).

3.1.2.2 Modi�ed Conditional Statements

Consider a conditional statement c ∈ =f and the corresponding modi�ed

version cp ∈ =fp : we say that the changes that p applies on the condition are

non-disruptive (nd) if c and cp satisfy Equation 3.3.

nd(c, cp) =

{
(c→ cp) if c = CT

guard

(cp → c) otherwise
(3.3)

Equation 3.3 models the fact that if a condition is modi�ed then it should

become more restrictive in order to not allow new states to �ow through the

function (i.e., cp → c). However, in case the condition is a positive guard,

(i.e., it guards a BBerr), then it should become less restrictive (i.e., c→ cp).

In this way the changes to the condition satisfy Equation 3.1.

3.1.2.3 Inserted Conditional Statements

Insertions of conditional statements (i.e., which means that they are only

present in fp) are considered non-disruptive (note that we are referring only

to the conditional statements themselves, not to the statements in the blocks

that they guard). This is because the insertion of a condition c does not make

Equation 3.1 or Equation 3.2 invalid. Equation 3.2 always holds because if

c is inserted then (x ∈ =f) is false. Equation 3.1, instead, holds because the

insertion of c can only restrict the set of states that �ow through the function

(i.e., this happens when the condition is a CT
guard and it guards an inserted

BBerr).

3.2. GITRDONE DESIGN 21

Figure 3.3: Flow of the actions performed by GitRDone.

3.1.2.4 Deleted Conditional Statements

The removal of a condition is considered a non-disruptive change if compen-

sated by the insertion or modi�cation of another condition. For example,

in Figure 3.2 the condition if(!req->buff) is deleted but the �rst if is

modi�ed to handle the same cases. More formally, if the removal of a con-

dition c does not allow more states to �ow through the function, then it is

non-disruptive. This can be formally expressed as shown in Equation 3.4,

where BBc is the basic block to which c belongs, succ(BB) is the set of all

the successors basic blocks of BB, and s ↪→BB f means that the execution

of f with starting state s reaches the basic block BB in function f .

∀ BB ∈ succ(BBc).(BB 6= BBerr → (∀s ∈ S | (s ↪→BB fp)→ (s ↪→BB f))) (3.4)

Equation 3.4 enforces the fact that if a condition is deleted, then all the

basic blocks that it guards (i.e., succ(BBc)) should still be reachable under

the same, or under more restrictive, constraints (i.e., as enforced the by the

rightmost implication in the equation).

For a patch a�ecting multiple functions, the above described steps should

be performed for each one of them. Note that the outlined technique is just a

possible method to identify ndps: we acknowledge the possibility of existence

of more e�cient ways to achieve the same result. In Section 3.2, we show the

design of our ndps identi�cation tool based on this approach.

22 CHAPTER 3. APPROACH

3.2 GitRDone Design

As mentioned in Section 2.4, we want to build a tool that can identify ndps

just by analyzing the original and the modi�ed versions of the patched source

code �le without the need for additional information (e.g., build environ-

ment, preprocessor �ags, header �les, commit messages etc.), and that is

lightweight, fast and scalable. In this section we show the details of GitR-

Done, a tool that uses static analysis to analyze a given C source code

patch and determine if it is an ndp, and that adheres to the requirements

mentioned above. It is based on the ndps identi�cation approach outlined in

Section 3.1.2, and we will show all the assumptions that we made to make

it practical and to follow the requirements. We design our tool to work on

C source �les. The block diagram in Figure 3.3 shows the steps that GitR-

Done performs, outlined in a detailed way in the remainder of this section.

3.2.1 Preprocessing

GitRDone starts by handling the C preprocessor directives. File inclusions

(i.e., #include) are ignored, since as a requirement we do not want to collect

information outside of the two input source code �les. Macro de�nitions are

ignored too: macro calls will be treated as regular function calls as explained

in further steps. The system then uses the unifdef 1 tool to handle conditional

code inclusion directives (e.g., #ifdef, #ifndef, etc.): the output of this tool

is a valid C source �le, without any of these constructs. Note that this step

could exclude certain code segments, depending on the constants de�ned

within the �le (i.e., the ones to which unifdef has access in this setup). This

�rst step outputs two C source �les ready to be parsed.

3.2.2 Parsing

The preprocessed source �les are parsed using the Joern [58] fuzzy parser,

which provides an Abstract Syntax Tree (AST) for all the functions in the

�le. Although Joern provides also a Control Flow Graph (CFG), with nodes

linked to the ones in the AST, and information about uses and de�nitions,

we had to modify it to suite to our needs. Speci�cally, we had to implement

identi�cation of basic blocks boundaries (since the Joern CFG nodes are

1http://dotat.at/prog/unifdef/

http://dotat.at/prog/unifdef/

3.2. GITRDONE DESIGN 23

single statements), linking of basic blocks to the corresponding AST nodes,

additional analyses (e.g., reaching de�nitions analysis [43]) and a simple type

inference [47]. At the end of this phase GitRDone has access to AST, CFG

and analysis results for each function.

3.2.3 Fine-Grained Di�

GitRDone uses function names to pair the functions in the original �le with

the corresponding ones in the new �les, assuming patches that insert, delete

or rename one or more functions to not be ndp. It then identi�es the functions

a�ected by the patch using java-di�-utils2, a common text di� tool, between

the two input �les. Text di�ng tools, based the Hunt algorithm [27], are good

for understanding statements inserted and deleted by a change, but they are

not useful for understanding moved statements and �ne-grained di�erences

between original and new code in terms of AST nodes. For this reason, our

system then applies a state-of-the-art AST di�ng technique, Gumtree [21],

between the original and patched ASTs of the a�ected functions. GumTree

maps the nodes in the old AST with the corresponding nodes in the new

one and identi�es nodes that have been moved, inserted, deleted or updated.

A moved node is a node that the patch moved in another position in the

AST, but whose content was unchanged, while an updated node is a non-

moved node whose content was changed. The di�erences in the AST are also

associated to the corresponding nodes in CFG, thanks to the links between

AST and CFG nodes provided by Joern. Figure 3.4 shows an example of

why we need �ne-grained di� information: it is an ndp that just moved a

function call (i.e., pmic_spmi_show_revid(regmap, &sdev->dev);) under

a new if statement, without changing it, but the text di� simply displays

this change as the result of two independent actions (i.e., a deletion and an

insertion); GumTree, instead, maps together the corresponding nodes in the

two ASTs and marks them as moved.

3.2.4 Patch Analysis

In the remaining part of this section we explain how GitRDone performs

in practice the ndps identi�cation, based on the general technique described

2code.google.com/archive/p/java-diff-utils/

code.google.com/archive/p/java-diff-utils/

24 CHAPTER 3. APPROACH

if (IS_ERR(regmap))

return PTR_ERR(regmap);

- pmic_spmi_show_revid(regmap , &sdev ->dev);

+ /* Only the first slave id for a PMIC contains this information */

+ if (sdev ->usid % 2 == 0)

+ pmic_spmi_show_revid(regmap , &sdev ->dev);

return of_platform_populate(root , NULL , NULL , &sdev ->dev);

Figure 3.4: An ndp identi�ed by our tool on the main Linux kernel

repository (commit 742dcd115cb523f). It shows a case where the

information provided by GumTree is needed to understand the semantics of

the change.

in Section 3.1.2. The tool performs the following steps for every function

a�ected by the patch.

3.2.4.1 Identi�cation of Error Basic Blocks

A basic block BB is marked as a BBerr when it ends with a return state-

ment that returns a constant value or a C standard error code (i.e., one of

the constant symbols de�ned in errno.h) prepended by a minus sign (e.g.,

BB2, BB5, and BB6 in Figure 3.1). Cases that do not fall into this cate-

gory (e.g., BBs that end with calls to an error-handling function or with a

variable-value return statement) are hard to handle, without complex inter-

procedural analysis or symbolic execution to keep track of variable values and

constraints. GitRDone uses the following heuristic to handle these other

cases in a lightweight fashion: it checks for the presence of error-related words

(e.g., panic, error, fatal) or C error standard codes in the AST of the

last two statements of the basic block, meaning that it can �nd them both in

identi�ers (i.e., variables, function names, etc.) and in constant strings; we

de�ned a set of 15 of these error-related words, based on our observation. This

heuristic is based on the insight that error-handling basic blocks usually log

or print a message and then execute an error-related statement (e.g., return

error_var;, goto fatal_state;, an error-handling function call, etc.). In

addition, also break and continue are considered error-related words (since

we observed that they are mostly used to handle some loop-related error

states, such as loop early interruptions to improve performance) and also

return statements with no value. Note that this heuristic based approach

3.2. GITRDONE DESIGN 25

could lead to false positives and that we expect every error basic block to

be singularly matched by this method, thus the post-dominators of a BBerr

are not automatically considered BBerrs themselves. GitRDone then dis-

cards all changes that happen within the identi�ed BBerrs (i.e., it does not

consider them for the following steps).

3.2.4.2 Non-Conditional Statements

As explained in Section 3.1.2, GitRDone needs to determine the e�ects of

every a�ected non-conditional statement on the state of the function. This

cannot be done in practice, in the general case. However, our system applies

the following heuristic: the changes that a�ect statements that cannot control

the �ow of the patched function are considered non-disruptive. We say that

a statement cannot control the �ow of a function if its variable de�nitions

(i.e., defs, variables to which it assigns a value) are such that they cannot

reach any corresponding use inside any conditional statement (a�ected or

not). For example, in the sequence V = 0; V = 1; if(V) return; the

�rst statement cannot control the �ow because, although V is used in an

if condition, the value that it assigns to V cannot reach the use of V in

such condition. The second assignment, however, can control the �ow (i.e., 1

reaches the if condition). This process is applied recursively: for example, in

the sequence V = 0; V1 = V; if(V1) return; the �rst de�nition can reach

the use of V1 in the if condition. This is based on the insight that if a change

cannot a�ect the �ow of the execution in any way, then it is most-likely non-

disruptive. Note that this heuristic is applied only on the statements present

in the patched version of the function (i.e., it is not applied on the ones

deleted by the patch, addressed later in this section).

As an additional heuristic for this step, GitRDone ignores the defs per-

formed by the following classes of statements:

• Identi�er declarations that do not perform an initialization assignment

(i.e., int a;), or where the initialization assignments matches one of

these other heuristics.

• Memory erasure and release calls (e.g., memset(buff, 0, sizeof(buff);,

kfree(buff);).

• Zero-value or NULL-value assignments (e.g., ptr = NULL;, i = 0;).

26 CHAPTER 3. APPROACH

• Size-setting assignments matched by looking for the words size and

sizeof on the left and right side, respectively, (e.g., size = sizeof(buff);)

and error assignments, matched by looking for the same set of words

used in the identi�cation of error basic blocks (e.g., err_code = -EINVAL).

• Assignments where all the identi�ers in the AST of the right expression

respect the C constants standard uppercase convention (e.g., mask =

PLLMB_MISC1_LOCK_ENABLE).

The insight behind this heuristic is that all the e�ects of these classes of state-

ments are most likely related with resetting some variable values or memory

locations, or with setting up values for further operations (e.g., returning an

error, saving the size of a bu�er to enable further checks, etc.). GitRDone

also ignores changes that a�ect label statements (including their insertion

and deletion), since they do not have any e�ect: what changes the behavior

of the program are changes in the corresponding goto statements, that are

studied as any other non-conditional statement.

For what concerns deleted non-conditional statements, GitRDone relies

on the following assumption: if the e�ects of all the changes performed by

a the analyzed patch, excluding statements deletions, are identi�ed as non-

disruptive, then the deletions of non-conditional statements are ignored. The

reason behind this assumption is that we consider ignoring these statements,

in case all the rest is non-disruptive, as an heuristic to practically apply

what we say at the beginning of the formal de�nition (Section 3.1.1), when

we allow a patch to also delete some statements. In addition, if a patch only

deletes statements, then it is not considered an ndp.

3.2.4.3 Inserted Conditional Statements

Following the general ndps identi�cation technique outlined in Section 3.1.2,

GitRDone considers all the insertions of conditional statements (i.e., if-else

statements in C source code) to be non-disruptive. The statements in the

code blocks that they guard, if a�ected, are handled singularly by the other

steps of the analysis. Statements that are just moved under an inserted con-

dition, without any modi�cation, are ignored (i.e., not considered as a�ected

by all the other steps, including the non-conditional statements one). For ex-

ample, the function call in Figure 3.4 (i.e., pmic_spmi_show_revid(regmap,

&sdev->dev);). This because their functionality is not changed: the new

condition just restricts the number of states that can reach them.

3.2. GITRDONE DESIGN 27

3.2.4.4 Modi�ed Conditional Statements

GitRDone uses the Z3 theorem prover [19] to prove the implication between

the original and the patched conditions as described in Section 3.1.2. Every

a�ected condition is converted into a Z3 formula using information from the

AST and creating a new Z3 unconstrained variable for every operand. Fur-

thermore, the tool constraints the unsigned variables to be greater than zero

and de�nes standard C type limits as Z3 constants (i.e., the ones de�ned in

limits.h). Type casts and kernel optimization macros (e.g., likely() and

unlikely()) are ignored. In the current implementation bitwise operations

are disabled by default and not handled; they can be enabled but the result

is a huge performance overhead (i.e., up to 50 times the current execution

time, for some patches). This means that every bitwise operation is converted

into a Z3 unconstrained variable, just as a normal operand (e.g., when prov-

ing (v1&v2 > v3 + 1) → (v1&v2 > v3), GitRDone actually proves that

Z3var1 > Z3var2 + 1 → Z3var1 > Z3var2 using Z3). Note that this step

is applied not only on if/else conditions but also on loop conditions.

3.2.4.5 Deleted Conditional Statements

For what concerns deleted conditional statements, in order to implement

what Section 3.1.2 says in the corresponding step, we should use symbolic

execution and Z3 to implement a path-sensitive analysis that collects all the

constraints and proves the resulting implication (see Equation 3.4). This

would result in possible scalability issues, because of the path explosion [17]

problem. To keep the tool the most lightweight possible, we apply the same

heuristic used in the analysis of deleted non-conditional statements, described

above, and ignore deletions of the conditional ones too: the reason for which

we think that doing this is reasonable is also the same (refer to the end of

the non-conditional statements analysis outlined in this section).

3.2.5 Additional Heuristics

To increase the amount of patches that GitRDone can handle, we consider

as non-disruptive the ones where all the changes fall into a single one of the

following categories:

• Insertion or deletion of kernel synchronization function calls (e.g., spin_lock,

spin_unlock, mutex_lock, mutex_unlock).

28 CHAPTER 3. APPROACH

• Modi�cation of C security-sensitive function calls (e.g., strcpy, strncpy,

strlcpy, memcpy, sprintf, sscanf and their variants).

• O�-by-one �xes (e.g., size_str = sizeof(buf) -1 when -1 is in-

serted or deleted).

The fact that all the changes must fall into a single one of these categories

means that for one these heuristics to hold, for example, no conditions should

be a�ected, as they do not fall in any of these groups. The reason behind

these heuristics is that all the changes that they match are recurring patterns

of �xes that are most likely non-disruptive. Furthermore, we consider a patch

that only deletes statements to be an ndp when these are all inside error basic

blocks.

3.3 Alternative Ideas and Solutions

What we described up to this point is the �nal outcome of months of challeng-

ing work: we started from slightly di�erent goals and from the application

of di�erent ideas and solutions that did not always work as expected, and

eventually ended up trying with the approach that we outlined above. In

this section we talk about how the goals of the work evolved over time and

we give an overview of the other ideas and solutions that we tried to apply.

Note that, however, the motivation of the research never changed over time.

The initial goal of the work was, given a source-code patch, to identify

the set of security-related changes within it and to automatically apply them

only if non-disruptive with respect to the original functionality. The insight

behind this idea is that there could be patches that include unrelated changes

(i.e., tangled code changes [26]), with only a portion of them �xing a security

issue and the rest doing something di�erent that could disrupt the software

functionality. At this stage of the project we still did not have a proper

de�nition of non-disruptive patch: the idea was to consider as non-disruptive

the read-only changes (i.e., changes that do not modify variable values or

memory locations).

The initial approach that we designed was the following:

1. Extract the source-code di� of the patch.

2. Extract, for every hunk in the di�, a set containing the variables that

it reads and writes.

3.3. ALTERNATIVE IDEAS AND SOLUTIONS 29

3. Untangle unrelated code changes by grouping together the di� hunks

for which these sets of variables intersect.

4. Determine which groups of hunks perform security-related changes.

5. If a group of hunks is security-related and read-only, apply its changes.

In order to be able to analyze the hunks we linked all the inserted and

deleted statements to the corresponding AST nodes and, for each hunk, ex-

tracted the �ne-grained AST di�, using the same technique previously de-

scribed in this chapter. Eventually, we �gured out that we were trying to

achieve too many goals together: 1) untangling code changes; 2) identify-

ing security-related changes; 3) identifying non-disruptive changes; 4) auto-

matically apply non-disruptive security-related changes. For this reason, we

decided to start by focusing on a single one of these goals: identifying if a

source-code patch is security-related or not.

In order to achieve this new goal, we �rst started by manually analyzing

and studying a set of CVE-patching commits with the aim of identifying

common traits and features that characterize security patches. We observed

that a good portion of them simply modify or insert conditional statements

to restrict the possible inputs that can enter into one or more basic blocks.

Furthermore, we noticed that most of these patches modify the �ow of the

program in a way that makes more paths than before enter into error basic

blocks.

For this reason, we started implementing the identi�cation of error basic

blocks and the analysis of the conditional statements in a way similar to the

one described previously in this chapter. Eventually, while trying to apply

this �rst analysis and studying the results, we realized that we were actually

identifying patches that did not disrupt the original functionality, but that

many of them were not security �xes. This is because all the security �xes

that we observed in order to model the approach were also non-disruptive,

and while looking for common traits we ended up modeling this characteristic.

For this reason, we realized that just the identi�cation of non-disruptive

patches represents a complex and open research problem, and decided to

focus on it, since we already had a good idea of what to look for. We then

decided to de�ne in a more formal way what we meant by non-disruptive and

the result was what we described in this chapter.

Chapter 4

Implementation Details

GitRDone has been implemented as a Java-based tool. We chose to use

this programming language because we found Joern and GumTree to be

exactly what we needed when looking for a fuzzy parser and a tool capable

of computing AST di�s; being these two components programmed in Java,

the easiest way to extend them or interact with them is using the same

language. The remaining part of this section outlines the implementation

details of the steps described in Section 3.2.

4.1 Input handling and Preprocessing

GitRDone, once built, is a .jar �le that needs to be called providing two

�les as input. It then reads the content of the �les and performs the pre-

processing step using unifdef, as described in Section 3.2.1. In particular,

it calls the unifdefall executable on the two �les separately and saves the

output in two new �les that will be the ones parsed and analyzed in the

further steps. GitRDone also accepts di�erent parameters as input: the

relevant ones are -BV and -vis. The �rst one can be used to enable bitwise

operations when analyzing conditional statements (see Section 3.2.4) and the

second one to enable the graphical visualization of the AST di�erence (see

Section 4.3.1).

32 CHAPTER 4. IMPLEMENTATION DETAILS

4.2 Parsing and Joern Extensions

4.2.1 Functions AST Extraction

Joern is a tool written in Java and built to be �exible and easily extensible.

GitRDone sets up the C fuzzy parser by instantiating a ModuleParser ob-

ject: it calls the constructor ModuleParser(ANTLRParserDriver driver)

with an ANTLRCModuleParserDriver object as parameter. To be able to

extract the AST for the functions in the �les we implemented our own ex-

tensions of the ASTWalker and ASTNodeVisitor classes; an instance of our

AST walker is set as observer of the ModuleParser by calling the method

parser.addObserver. In this way, for every node parsed, the parser calls

the processItem method of the walker; the walker, then, calls our visitor

that visits the node and saves it in a list if it is an instance of FuncionDef

(i.e., the root node of a function in the AST). GitRDone then gets the list

of references to all the function ASTs from the visitor, for both the original

and the new �le.

4.2.2 CFG and Basic Blocks

To extract the CFG of a function using Joern it is su�cient to instantiate

an ASTToCFGConverter and to call its convert(FunctionDef f) method

passing as parameter a function AST (i.e., one of the FunctionDef objects

extracted as described above). We had to implement the CFG traversal

functionality: whenever traversing a CFG, GitRDone goes through all the

nodes once, ignoring loops. The Joern CFG contains a statement in every

node, with a reference to the corresponding node in the AST, but it does

not contain basic blocks information; in order to identify the basic blocks we

implemented a simple algorithm that works in two steps: 1) Identi�cation of

block leaders; 2) Identi�cation of BBs.

To perform the leaders identi�cation GitRDone traverses the CFG and

performs the following checks for every node n:

• If n is the �rst statement it is a leader.

• If n has more than one outgoing edge, the destination nodes of these

edges are leaders: this is because n is a conditional statement and all

the nodes that follow it start new basic blocks.

4.2. PARSING AND JOERN EXTENSIONS 33

• If n has more than one outgoing edge, the immediate post-dominator

of n is a leader: this is because n is a conditional statement, and the

next node that it is executed independently from the condition in n

starts a new basic block.

• If n is a C label statement it is a leader.

The information about post-dominators can be extracted directly using Jo-

ern: it is su�cient to instantiate a DominatorTree<CFGNode> object and call

its getDominator(CFGNode n) method. To instantiate it we need to create a

CDG (Control Dependency Graph) by executing CDGCreator cdgCreator =

new CDGCreator(); CDG cdg = cdgCreator.create(cfg);. We then call

cdg.getDominatorTree().

To perform the BBs identi�cation starting from the leaders we then pro-

ceed as follows: given a leader, the corresponding BB starts with it and

contains all the statements that follow it and that precede the following

leader. However, the Joern CFG is not always sound and does not handle

properly the CFG edges that exit from some statements for which it has no

information about the semantic (e.g., exit() should go directly to the end,

but since Joern does not enter the function's code, being a fuzzy parser, it

just considers it as any other function call and adds it as a common state-

ment node). For this reason we added an heuristic to consider some kind of

statements as basic block closers: break, continue, and return statements,

and calls to exit() or to longjmp(). Furthermore, we also added the fol-

lowing heuristic: if after the BBs extraction, performed as described, some

groups of consecutive statements do not belong to any BB, then they are

marked as a new BB (this holds also for single statements).

4.2.3 Reaching De�nitions

We needed to implement the recursive lookup of reaching de�nitions [43]

to perform the analysis of non-conditional statements as described in Sec-

tion 3.2.4. Joern is already able to extract uses and defs for a given statement,

and provides use-def relations through a DDG (Data Dependency Graph). A

use-def relation links to the use of a variable, performed by a speci�c state-

ment, the de�nition (or de�nitions) of that variable that can reach it non

recursively, with reference to the de�ning statement. For example, consider

the code A = 0; B = A; return B;. When getting the reaching de�nitions

34 CHAPTER 4. IMPLEMENTATION DETAILS

for the use of B performed by the return statement, Joern returns only B

= A, while we want to have also information about the fact that A = 0 can

in�uence, indirectly, the returned value. To implement the full reaching def-

inition analysis we had to add the recursive lookup of the de�nitions that

can reach a given use; the heuristic used in the analysis of non-conditional

statements (see Section 3.2.4) can then be implemented as a method that

returns all the statements that have at least one def that can recursively

reach at least one use performed by a given statement, passed as argument.

The pseudocode of this function can be found in Figure 4.1.

To implement it using Joern we needed to create:

• A UDG (Use-Def Graph), by calling the method convert(CFG cfg) of

the CFGToUDGConverter module.

• A DefUseCFG, by calling the method convert(CFG cfg, UDG udg) of

the CFGAndUDGToDefUseCFG module.

• A DDG, by calling the method createForDefUseCFG(DefUseCFG ducfg)

of the DDGCreator() module.

The DefUseCFG can then be used to extract uses and defs for a given state-

ment (by calling its getSymbolsDefinedBy and getSymbolsUsedBymethods)

and the DDG to extract the non-recursive reaching de�nitions (by calling its

getDefUseEdges method and looking for the proper relations in the set of

DefUseRelation objects that it returns).

4.2.4 Type Inference

We needed to implement a simple type inference [47] in order to be able

to understand which variables are unsigned, so that they can be constrained

while using Z3 (as described in Section 3.2.4). The type inference is performed

in two steps: 1) extraction of known types for variables, by looking at the

declarations; 2) inference of the types of the other variables by looking at the

assignments. The �rst step simply looks at variable declarations to identify

a set of known variable-type pairs to start with, while the second step goes

through all the assignments in the code, recursively, and propagates the type

of the variable on the right side of an assignment to the variable on the left

side; recursively means that this step is repeated until a �xed point is reached

(i.e., no more types can be inferred). As an additional heuristic, also type

4.3. FUNCTIONS DIFF 35

def get_reaching_defs_recursive(stmt) {

return get_reaching_defs_recursive_helper(stmt , [], [])

}

def get_reaching_defs_recursive_helper(stmt , analyzed_stmts , retval) {

if stmt in analyzed_stmts

return

else

analyzed_stmts.add(stmt)

uses = get_vars_used_by(stmt);

for use in uses {

// this gets the defining statements

reaching_defs = ddg.get_non_recursive_reaching_defs(stmt , use);

retval.add_all(reaching_defs);

for definition in reaching_defs

get_reaching_defs_recursive_helper(definition , analyzed_stmts , retval)

}

}

Figure 4.1: Pseudocode of the recursive extraction of statements whose defs

can reach uses of another given statement.

casts are used to infer the type of the variable on the left (i.e., when there is

an explicit cast, the type is known). Casts and identi�er declarations can be

simply found by traversing the AST and looking at the corresponding node

types.

4.3 Functions Di�

After parsing the two �les, extracting the functions ASTs and pairing them by

name, as described in Section 3.2.2 and Section 4.2, the �rst step to perform

the di� is understanding which of the functions are a�ected by the patch. In

Section 3.2.2 we said that we use java-di�-utils to do it: speci�cally, we use

it to extract the line-based di� between the two �les and then look at the line

numbers. Joern provides line information (i.e., line in the source-code �le)

for every AST node, so it is easy to understand which functions are a�ected

by the patch. For all these a�ected functions, we then convert the original

and new AST in the format that GumTree accepts (i.e., ITree) and extract

the tree di� information.

The conversion of the Joern AST into an ITree is trivial: we just create

36 CHAPTER 4. IMPLEMENTATION DETAILS

Matcher m = Matchers.getInstance ().getMatcher(itree1 , itree2);

m.match();

MappingStore mappings = m.getMappings ();

ActionGenerator g = new ActionGenerator(itree1 , itree2 , mappings);

g.generate ();

List <Action > actions = g.getActions ();

Figure 4.2: Java code to extract the GumTree mappings and actions, given

two ITrees.

-void foo(int a, int b){

- printf ("a: %d, b: %d", a, b);

+void foo(int a){

+ printf ("a: %d", a);

}

Figure 4.3: Example code corresponding to the ASTs shown in Figure 4.5

and Figure 4.6.

a new ITree node for every node in the AST, �ll it with the same data (i.e.,

node type and label), and link them together in the same way. GumTree

mappings and di� can then be generated by calling the code in Figure 4.2;

GumTree returns a list of ordered actions that, if applied, transform the

original AST into the new one (i.e., an edit script).

To map these actions as di� information on the Joern AST, GitRDone

just goes through the list and maps every node in the original and new AST

to an action type (i.e., delete, insert, move, update), if a�ected by an action.

Note that it is necessary to use both the ASTs because information about

deleted nodes can be added only to the original one, since such nodes are

not present in the new one, and, for the same reason, information about

inserted nodes can be added only to the new one. Furthermore, move and

update actions are always added to the original and new nodes involved:

the Gumtree mapping can then be used to understand, for example, where a

node in the original AST was moved. For this reason, we also keep a mapping

between nodes of a Joern AST and the corresponding tree in the GumTree-

compatible format, so that these GumTree mappings between original and

new nodes can be easily accessed.

4.4. PATCH ANALYSIS 37

void foo(int a){

- if (a < 0)

+ if (a < 0 || a >= 10)

return -1;

}

Figure 4.4: Example code corresponding to the ASTs shown in Figure 4.7

and Figure 4.8.

4.3.1 Visualization

GitRDone can output a graphical representation of the original and new

ASTs; it also includes di� information. Figure 4.5 and Figure 4.6 show the

visualization of the original and new ASTs, respectively, corresponding to

the source code di� shown in Figure 4.3. Another example is shown in Fig-

ure 4.7 and Figure 4.8, with the corresponding code shown in Figure 4.4. We

used Graphviz1 to implement the visualization feature: GitRDone converts

the AST in the .dot format and uses the dot command to generate the

corresponding visualization in the desired format (e.g., .png, .svg, etc.).

4.4 Patch Analysis

GitRDone uses the information extracted as shown previously in this chap-

ter to perform the analysis described in Section 3.2.4. Speci�cally, it uses

the CFG and the AST, together with the basic blocks information, the type

inference and the reaching de�nitions, to apply the described analysis of the

statements. The only part of the implementation of this portion of the tool

that is worth showing in a more detailed way is how conditions are converted

in order to be analyzed by Z3.

The Z3 interaction is performed through the corresponding Java API:

for every condition GitRDone goes through the corresponding original and

new ASTs and generates the necessary operations and variables. The two

conditions are converted into the same Z3 context so that the tool is aware

of the fact that a de�ned variable with a certain name is the same in both.

Eventually, to prove the implication between the two conditions, GitRDone

tries to verify that the negation of the implication is unsatis�able. For ex-

ample, to check if it is always true that OriginalC → NewC using Z3, one

1http://www.graphviz.org/

http://www.graphviz.org/

38 CHAPTER 4. IMPLEMENTATION DETAILS

Figure 4.5: Example of original AST with di� information; the

corresponding source code di� is shown in Figure 4.3, the new AST in

Figure 4.6.

Figure 4.6: Example of new AST with di� information; the corresponding

source code di� is shown in Figure 4.3, the original AST in Figure 4.5.

4.4. PATCH ANALYSIS 39

Figure 4.7: Example of original AST with di� information; the

corresponding source code di� is shown in Figure 4.4, the new AST in

Figure 4.8.

Figure 4.8: Example of new AST with di� information; the corresponding

source code di� is shown in Figure 4.4, the original AST in Figure 4.7.

40 CHAPTER 4. IMPLEMENTATION DETAILS

must check the satis�ability of ¬(OriginalC → NewC): if it is unsatis�able

(i.e., no values are such that the formula holds), then the �rst implication is

always true.

Chapter 5

Evaluation

We evaluate the e�ectiveness of GitRDone in three di�erent ways. First,

we run it on a large dataset of 39,191 changes (i.e., commits) spanning over

10 kernels repositories, collected over the year 2016, in order to understand if

it actually detects ndps, according to our de�nition (see Section 5.1). Second,

we run it on a set of security patches (i.e., CVE patching commits) to evaluate

the usefulness of this tool in speeding the propagation of these more critical

�xes. Third, we check if some of the ndps identi�ed on the Linux kernel are

still unpatched, at the time of writing, on some of its Android-related forks:

this would provide real examples where GitRDone can be useful and, in

case of security �xes, would show a way to use it as a vulnerability �nding

tool (see Section 5.3). We argue that the results of these three experiments

will demonstrate the usefulness that such a tool can represent for project

maintainers, when it comes to ease and speed the process of applying software

patches.

The analysis that GitRDone performs, described in Section 3.2, is an

intra-functional static analysis that does not consider the interaction between

the di�erent modi�ed functions. For this reason, to isolate the e�ect of these

interactions, that represent a possible confounding factor, we evaluate it only

on patches that a�ect a single C source �le (i.e., .c format only) and a

single function within it. We also exclude the patches where the changes

are completely trimmed by the preprocessing step (see Section 3.2). All

the patches studied in these experiments are real changes extracted from

repositories of widely used kernels (see Section 5.1 for more details).

42 CHAPTER 5. EVALUATION

0-5 5-10 10-15 15-20 20+
0

20

40

60

80

100

54.6

20.9

9.2
5.1

10.2

Commit size (lines a�ected)

Perc.

Figure 5.1: Distribution of the size of all the commits studied by

GitRDone.

0-5 5-10 10-15 15-20 20+
0

20

40

60

80

100

69.5

18.5

5.7 2.6 3.7

Commit size (lines a�ected)

Perc.

Figure 5.2: Distribution of the size of the ndps identi�ed by GitRDone.

5.1 Experiment 1: Large-Scale Evaluation

In this experiment we run GitRDone on a large set of patches: we selected

ten open-source kernels widely used by desktop, mobile and embedded oper-

ating systems, and we collected from each of them all the single-C-�le single-

function commits of the year 2016 (considering merges as single commits).

The targeted repositories, together with information about the number of

commits studied, are shown in Table 5.1.

Table 5.3 shows the number of ndps identi�ed by GitRDone in each one

of the 10 studied projects, together with some statistics that show the num-

ber of cases where the patch performs only condition-related non-disruptive

changes, as we model them in Section 3.2. (e.g., it just modi�es an existing

5.1. EXPERIMENT 1: LARGE-SCALE EVALUATION 43

Project studied git branch/tag studied commits

1 Linux kernel main repository master 19,393

2 NVIDIA Tegra Linux kernel android-7.0.0_r0.3 259

3 Qualcomm Msm Linux kernel android-7.1.0_r0.3 1,857

4 OP-TEE Trusted OS master 58

5 LK embedded kernel main repository master 16

6 QuIC LK codeaurora embedded kernel LE.UM.1.1.10-00410-8x09.0 186

7 Xiaomi Linux kernel land-m-oss 417

8 Xperia Linux kernel aosp/LA.BR.1.3.3_rb2.14 463

9 Linaro ARM Linux kernel optee 16,472

10 Android x86_64 Linux kernel android-7.0.0_r0.32 69

Total 39,191

Table 5.1: Studied projects and commits. (refer to Table 5.2 for project

names).

Project URL

1 https://github.com/torvalds/linux

2 https://android.googlesource.com/kernel/tegra

3 https://android.googlesource.com/kernel/msm

4 https://github.com/OP-TEE/optee_os

5 https://github.com/littlekernel/lk

6 https://source.codeaurora.org/quic/la/kernel/lk

7 https://github.com/MiCode/Xiaomi_Kernel_OpenSource

8 https://github.com/sonyxperiadev/kernel

9 https://github.com/linaro-swg/linux

10 https://android.googlesource.com/kernel/x86_64.git/

Table 5.2: URLs of the studied repositories (refer to Table 5.1 for project

names).

condition). The column that counts the patches that just inserted new if

statements takes into account also the ones where they were added together

with the basic blocks that they guard (whose a�ected statements must still

pass the ndp checks that GitRDone performs).

We show these statistics because we think that the fact that so many

patches just modify existing conditions or insert missing checks is an inter-

esting �nding: these are cases where the maintainers would most likely just

need to check very few lines of code, that often do not even perform writes

(i.e., assignments within conditions are not common), in order to choose if to

apply the patch or not. Furthermore, these numbers show that GitRDone

does not detect just these short patches.

https://github.com/torvalds/linux
https://android.googlesource.com/kernel/tegra
https://android.googlesource.com/kernel/msm
https://github.com/OP-TEE/optee_os
https://github.com/littlekernel/lk
https://source.codeaurora.org/quic/la/kernel/lk
https://github.com/MiCode/Xiaomi_Kernel_OpenSource
https://github.com/sonyxperiadev/kernel
https://github.com/linaro-swg/linux
https://android.googlesource.com/kernel/x86_64.git/

44 CHAPTER 5. EVALUATION

error = -EINVAL;

goto out_put_tmp_file;

}

+ if (f.file ->f_op != &xfs_file_operations ||

+ tmp.file ->f_op != &xfs_file_operations) {

+ error = -EINVAL;

+ goto out_put_tmp_file;

+ }

+

ip = XFS_I(file_inode(f.file));

tip = XFS_I(file_inode(tmp.file));

Figure 5.3: A security patch identi�ed as ndp by GitRDone on the main

Linux kernel repository (commit 3e0a3965464505). It does not have a

corresponding CVE ID.

patch just a�ects speci�c statements (% over ndps)

Project ndps (% over commits) just inserts if stmts just a�ects conditions

1 4,239 (21.86%) 764 (18.02%) 412 (9.72%)

2 72 (27.80%) 25 (34.72%) 9 (12.50%)

3 474 (25.51%) 104 (21.94%) 67 (14.14%)

4 17 (29.31%) 6 (35.29%) 3 (17.65%)

5 4 (25.00%) 1 (25.00%) 0 (0.00%)

6 36 (19.35%) 18 (50.00%) 1 (2.78%)

7 92 (22.06%) 24 (26.09%) 15 (16.30%)

8 117 (25.27%) 31 (26.50%) 12 (10.26%)

9 3,567 (21.65%) 660 (18.50%) 353 (9.90%)

10 20 (28.99%) 5 (25.00%) 1 (5.00%)

Total 8,638 (22.04%)

Table 5.3: Large-scale experiment results (refer to Table 5.1 for project

names and information).

sample size true false

identi�ed as ndps (positive matches) 100 96 4

not identi�ed as ndps (negative matches) 100 86 14

Table 5.4: Results of the manual checking performed on the commits

analyzed in the �rst experiment (see Table 5.3).

patch just a�ects speci�c statements

CVE patches source ndps just inserts if stmts just a�ects conditions

Linux 36 / 69 (52.17%) 12 (33.33%) 5 (13.89%)

Android bulletin 73 / 122 (59.84%) 22 (30.14%) 15 (20.55%)

Total 109 / 191 (57.06%)

Table 5.5: CVE patches experiment results.

5.1. EXPERIMENT 1: LARGE-SCALE EVALUATION 45

True positive rate 96.00 %

False positive rate 4.00 %

True negative rate 86.00 %

False negative rate 14.00 %

Precision 96.00 %

Recall 87.27 %

Table 5.6: Statistics of the manual checking results shown in Table 5.4.

u32 count , ordinal;

unsigned long stop;

+ if (bufsiz < TPM_HEADER_SIZE)

+ return -EINVAL;

+

if (bufsiz > TPM_BUFSIZE)

bufsiz = TPM_BUFSIZE;

Figure 5.4: A security patch identi�ed as ndp by GitRDone on the main

Linux kernel repository (commit ebfd7532e98581). It does not have a

corresponding CVE ID.

Over the total 39,191 commits studied, GitRDone identi�ed 8,638 non-

disruptive patches. Given the large amount of subjects, we manually checked

100 patches identi�ed as ndps and 100 not identi�ed as ndps, randomly-

sampled from all the studied projects. The results of the manual-checking

are shown in Table 5.4, while Table 5.6 shows the corresponding statistics.

The false positives are due to the fact that the technique described in Sec-

tion 3.1.2 and the assumptions and heuristics outlined in Section 3.2 are not

sound. However, since GitRDone does not apply the patches in an auto-

matic way, the false positives have no direct negative impact, assuming that

the maintainers are experienced enough to understand that they di�er from

the rest of the patches that GitRDone suggests to apply.

Figure 3.4 shows a real instance of ndp on the Linux kernel, identi�ed by

GitRDone. Although it is a simple and easily readable example, we argue

that the tool works also on larger patches: this can be inferred by looking

at Figure 5.2 and Figure 5.1. The �rst of these two plots (i.e., Figure 5.2)

shows the distribution of the size of the commits that GitRDone identi�ed

as ndp, while the second one (i.e., Figure 5.1) shows the same information

for all the ones that it analyzed. One can see that the 6.3% of the patches

identi�ed as ndps (i.e., 544 of them) a�ect more than 15 lines of code (i.e.,

46 CHAPTER 5. EVALUATION

lines a�ected are the sum of lines added and deleted according to the git

di� tool), even though they are on average smaller than the average studied

patch. Figure 5.5 shows an example of a more complex patch identi�ed by

GitRDone.

Looking at these results we feel con�dent in saying that GitRDone

would be helpful for project maintainers. It could directly be used, for ex-

ample, to prioritize the changes that must be analyzed and tested, so that

the ones that need less testing can be applied �rst. In this way, according

to the results shown in Table 5.6, the 96% of the patches that it identi�es

as ndps could be imported in a fast and almost e�ortless way, leaving as last

all the ones that are not ndps (i.e., those patches for which it would be time

consuming anyway).

In Section 2.2 we mentioned the fact that it is possible for some patched

vulnerabilities to not have a corresponding entry in the CVE database, be-

cause of human error (we selected the CVE database because it is the one

used as a reference by the maintainers of the studied projects). While manu-

ally checking the commits studied in this experiment we con�rmed that this

problem exists: we found real instances of security patches that GitRDone

marked as ndp and for which we were not able to �nd a corresponding entry

in the CVE database. Figure 5.4 and Figure 5.3 show two of these instances.

5.2 Experiment 2: Evaluation on CVEs

The goal of this second experiment to determine if it is true that a signi�cant

portion of security patches are ndps, as claimed in Section 2.2. We collected

all the CVE patching commits linked as reference �xes for kernels CVEs

from all the 2016 Android security bulletins [1], and, as previously done in

the �rst experiment, we studied only the ones that patch a single function

and a single C �le. This resulted in the analysis of 122 CVE patches over the

total 238 C-modules patches extracted from the bulletins (the rest of them

patch CVEs in C++ or Java modules).

In order to have a larger dataset we also scraped the CVE database, ex-

tracted the Linux kernel CVEs and collected the commit hash of every patch

linked in the references of each one of them. We then looked for these CVE-

patching commits in the dataset of the �rst experiment (see Section 5.1).

Eventually we were able to �nd a total of 69 CVEs, in addition to the ones

collected from the Android bulletins. Table 5.5 shows the results obtained

5.2. EXPERIMENT 2: EVALUATION ON CVES 47

@@ -787,3 +787,3 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

if (ret < 0)

- goto err_pages;

+ goto free_pages;

@@ -792,3 +792,3 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

ret = -EFAULT;

- goto err_put_page;

+ goto put_pages;

}

@@ -798,3 +798,3 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

ret = -ENOMEM;

- goto err_put_page;

+ goto put_pages;

}

@@ -803,8 +803 ,12 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

GFP_KERNEL);

+ if (!privs [0]) {

+ ret = -ENOMEM;

+ goto put_pages;

+ }

+

privs [1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes [1],

GFP_KERNEL);

-

- if (!privs [0] || !privs [1]) {

+ if (!privs [1]) {

ret = -ENOMEM;

- goto err_privs;

+ goto free_privs_first;

}

@@ -815,3 +819,3 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

ret = -ENOMEM;

- goto err_privs;

+ goto free_privs_second;

}

@@ -847,12 +851 ,10 @@ int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu ,

return 0;

-

-err_privs:

- kfree(privs [0]);

+ free_privs_second:

kfree(privs [1]);

-

-err_put_page:

+ free_privs_first:

+ kfree(privs [0]);

+ put_pages:

for (i = 0; i < num_pages; i++)

put_page(pages[i]);

-

-err_pages:

+ free_pages:

kfree(pages);

Figure 5.5: An ndp identi�ed by our tool on the main Linux kernel

repository (commit 46d4e7479252d3).

48 CHAPTER 5. EVALUATION

int check_aboot_addr_range_overlap(uint32_t start , uint32_t size)

{

/* Check for boundary conditions. */

- if ((start + size) < start)

+ if ((UINT_MAX - start) < size)

return -1;

Figure 5.6: Real integer over�ow patch identi�ed as ndp by GitRDone

(CVE-2014-9795 from July 2016 Android security bulletin).

alts = &iface ->altsetting[fp ->altset_idx];

altsd = get_iface_desc(alts);

+ if (altsd ->bNumEndpoints < 1) {

+ kfree(fp);

+ kfree(rate_table);

+ return -EINVAL;

+ }

+

fp->protocol = altsd ->bInterfaceProtocol;

if (fp ->datainterval == 0)

Figure 5.7: Real CVE patch identi�ed as ndp by GitRDone

(CVE-2016-2184 patched by Linux kernel commit 0f886ca12765d2).

after running GitRDone on them, together with the same kind of statistics

shown in the results of the �rst experiment (i.e., Table 5.3).

The results of this second experiment show that the 57.06% of the CVE-

patching commits are non-disruptive, while in the �rst experiment GitR-

Done (i.e., on generic patches) the percentage was 22.04%. These �ndings

demonstrate that for a security patch it is most likely to be non-disruptive

then for a generic patch. They also show that GitRDone could be use-

ful not only to speed-up the process of selecting and applying a signi�cant

number of changes (as shown in Section 5.1) but also to apply the 57.06%

of the security patches in a faster way and to notify maintainers about some

of the patches that �x a security �aw but do not have an associated CVE

database entry (i.e., as shown in Section 5.1, see Figure 5.4 and Figure 5.3).

These security �xes would otherwise fall into the pool of all the commits that

project maintainers need to manually analyze, without a way to distinguish

them from the others.

Figure 5.6 and Figure 5.7 shows two example of CVE patching commits

identi�ed as ndps by GitRDone, extracted from the Android security bul-

5.3. EXPERIMENT 3: ZERO-DAYS IN VENDOR KERNELS49

letin and the Linux kernel, respectively. Figure 5.6, in particular, shows one

of the CVEs that we mentioned in Section 2.2: it was patched in Android

with more than one year delay from the appearance of the corresponding

entry in the database.

5.3 Experiment 3: Zero-Days in Vendor Ker-

nels

In this third experiment we check how many of the Linux Kernel mainline

commits identi�ed as ndps in the �rst experiment (see Section 5.1) still have

to be applied to one or more of the Linux Kernel forks that we studied (i.e.,

projects 2, 3, 7, 8, 9, and 10 in Table 5.1), at the time of writing (i.e., �rst

week of February 2017). To do that, given a commit identi�ed as ndp, we

extract the a�ected �le's source code before the change and we compare it

to the same �le, if present, in all the listed kernel forks (Table 5.1 show the

git branch or tag that we studied). If the function a�ected by the commit

does not di�er between these two �les then it means that the change has not

been applied on the studied fork. To perform the comparison we use the git

di� tool and check that there are no modi�cations in the targeted function

(i.e., git di� is able to determine the C functions changed).

After applying this technique we found that 880 of the 4,239 Linux kernel

identi�ed ndps (i.e., 20.75%) are still not applied in at least one of the consid-

ered forks: we identi�ed 2076 instances of this behavior, meaning that most

of these 880 commits are still unapplied on more than one fork. A signi�-

cant portion of these are changes not considered useful by the maintainers

(e.g., removals of unused code, small refactorings, etc.), and not imported

for this reason. However, we found out that 18 of them are CVE patching

commits (i.e., the ones that we linked to the corresponding CVEs, as shown

in Section 5.2) that still have to be imported by the maintainers of some

forks: this supports the �ndings of previous studies [10,29,38,42] that say, as

already mentioned in Section 2.2, that vulnerability databases are not always

e�ective in speeding the propagation of security �xes.

While manually looking for critical patches in this set of commits we

also found 5 instances of security patches that do not have a corresponding

CVE database entry and that are still unapplied on di�erent kernel forks,

including even the ARM Linux kernel main repository (i.e., project 9 in

50 CHAPTER 5. EVALUATION

Table 5.1): these can be seen as potential zero-day vulnerabilities. We will

report all of them to the corresponding project maintainers and vendors and

submit all the necessary requests for CVEs. For security reasons, we do not

disclose more information about these patches.

5.4 Performance Considerations

We measured the time that GitRDone takes to run on 20,000 of the patches

studied in the �rst experiment (i.e., Section 5.1) and we can argue that it

can be considered fast and scalable: the average time that it takes to analyze

a patch is 1.14 seconds when running on a machine equipped with two 2.40

GHz 6-core 12-thread CPUs and 100GB of RAM.

5.5 Summary of Results

Based on the results outlined throughout this section, we can argue that our

tool can be helpful for project maintainers: the propagation of patches from

the main repository of a project to the related software is, in general, slow,

and requires a lot of e�ort, as shown in Section 2.2, and this is true also when

it comes to security patches. The maintainers have to manually monitor a

speci�c source in any case: either the commit log of the main line, when

they want to perform generic upgrades, or some vulnerability database (i.e.,

CVEs, in the studied projects), when they want to apply the latest critical

�xes. GitRDone would instead identify a portion of commits (i.e., the ndps)

that are most likely applicable with minimal testing e�ort, and would directly

notify the maintainers about them. Furthermore, these ndps, as we shown in

the results, include also a signi�cant portion of the CVE-patching commits

(i.e., 57.06%) and instances of security �xes that patch vulnerabilities not

present on the CVE database, meaning that GitRDone can be useful in

patching vulnerabilities that would, otherwise, remain unpatched for a long

time. In addition, we also shown how GitRDone could be used to �nd zero-

day vulnerabilities in related projects starting from the software on which

they depend on.

Chapter 6

Conclusions

In this work we provided a formal de�nition of non-disruptive patches (ndps)

and outlined a method to identify them: to the best of our knowledge, this is

the �rst study that does that. We also designed, implemented and evaluated

GitRDone, a tool based on our ndp identi�cation approach that can de-

termine if a patch is non-disruptive using only the original and the patched

source code of the a�ected �le, without the need for external information

(e.g., build environment, commit message, etc.). Our large scale evaluation

on 39,191 commits extracted from 10 di�erent open source kernels reposi-

tories, and on 191 CVE patches, shows that we identify ndps with a good

precision (i.e., 96.00%) and that a signi�cant amount of security patches are

non-disruptive (i.e., 57.06%). Furthermore, we show how GitRDone can be

used to �nd various unpatched security issues (i.e., zero-day vulnerabilities)

in the studied vendor kernels repositories, starting from security ndps applied

on the mainline repository and not linked to any CVE. We are in the process

of reporting the discovered vulnerabilities to the a�ected vendors.

6.1 Limitations

This study comes with several limitations. In Section 3.1.1, we de�ned ndps

but we did not provide a formal proof that shows that an ndp does not ac-

tually disrupt the original functionality of the software. In Section 3.1.2 we

then de�ned a general technique to identify them: as shown by our evalua-

tion, even a simpli�ed implementation of this technique leads to good results

in practice. We acknowledged the possibility of false positives, but our ex-

52 CHAPTER 6. CONCLUSIONS

periments show that the they are a small percentage in practice, and that

they do not represent a signi�cant risk for the maintainers.

In the current implementation, GitRDone performs an intra-functional

analysis (see Section 3.2) and studies every modi�ed function independently,

reason for which in we evaluated it on patches that a�ect just a single �le

and a single function (see Chapter 5). The system can be extended to

multiple functions, task that involves handling the inter-functional interac-

tions [22, 28]. We acknowledge that there could be ndps that a�ect multiple

functions and �les; the evaluation of GitRDone on these is out of the scope

of this study. Furthermore, previous research show that most of the commits

are small [7] in repositories where developers are experienced, such as the

studied ones (see Table 5.1). We also expect kernels developers, given their

experience, to not commit tangled changes [26], but the tool could also be

extended to be capable of untangling code changes before the analysis [20].

Another limitation is that GitRDone, at the moment, works only on

C source code; however, the parser that we use should be easily extensible

to other languages. The �ne-grained di� step is language agnostic, thus,

to extend the tool to other languages, we would only need to add language

speci�c heuristics and preprocessing. A good solution would be to have a

con�gurable front end for di�erent languages (i.e., approach already used by

LLVM [33]). As our implementation is based on Joern and GumTree, we

also share the same limitations that these tools have.

6.2 Future Work

WhileGitRDone can be used to identify non-disruptive patches, we think it

represent only a �rst step towards a system that can also automatically apply

them and that could potentially be integrated in version control systems (e.g.,

git). Then, in order to be automatically applicable on di�erent code bases,

the patches should be abstracted in a context-aware fashion and transformed

to suite to a di�erent context (e.g., with di�erent identi�ers names), using

an approach such as the one shown by Meng et al. [39]. Even in the current

state, we plan to enable the integration of GitRDone with a version control

system, so that it can monitor the commit log of a project and notify the

maintainers of related repositories (i.e., fork of such project) about possible

ndps. This would already speed the patch propagation process and help

patching more security issues (because of those security ndps that miss a

6.2. FUTURE WORK 53

corresponding CVE, as mentioned above). To enable future research we will

release the source code of GitRDone at the time of publication.

Bibliography

[1] 2016 android security bulletins. source.android.com/security/

bulletin/2016.html. Accessed: 2017-02-11.

[2] Android msm kernel. https://android.googlesource.com/kernel/

msm.git/+/android-msm-angler-3.10-marshmallow-mr1. Accessed:

2017-02-13.

[3] The biggest and weirdest commits in linux kernel git his-

tory. www.destroyallsoftware.com/blog/2017/the-biggest-and-

weirdest-commits-in-linux-kernel-git-history. Accessed: 2017-

02-15.

[4] Community reaction to delayed patching. https://twitter.com/

RatedG4E/status/760322614912954368. Accessed: 2017-02-13.

[5] Linux kernel con�guration. http://www.tldp.org/HOWTO/SCSI-2.4-

HOWTO/kconfig.html. Accessed: 2017-02-13.

[6] John Admanski and Steve Howard. Autotest-testing the untestable. In

Proceedings of the Linux Symposium. Citeseer, 2009.

[7] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. What's a

typical commit? a characterization of open source software reposito-

ries. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE

International Conference on, pages 182�191. IEEE, 2008.

[8] Jesper Andersen, Anh Cuong Nguyen, David Lo, Julia L Lawall, and

Siau-Cheng Khoo. Semantic patch inference. In Automated Software

Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM Interna-

tional Conference on, pages 382�385. IEEE, 2012.

source.android.com/security/bulletin/2016.html
source.android.com/security/bulletin/2016.html
https://android.googlesource.com/kernel/msm.git/+/android-msm-angler-3.10-marshmallow-mr1
https://android.googlesource.com/kernel/msm.git/+/android-msm-angler-3.10-marshmallow-mr1
www.destroyallsoftware.com/blog/2017/the-biggest-and-weirdest-commits-in-linux-kernel-git-history
www.destroyallsoftware.com/blog/2017/the-biggest-and-weirdest-commits-in-linux-kernel-git-history
https://twitter.com/RatedG4E/status/760322614912954368
https://twitter.com/RatedG4E/status/760322614912954368
http://www.tldp.org/HOWTO/SCSI-2.4-HOWTO/kconfig.html
http://www.tldp.org/HOWTO/SCSI-2.4-HOWTO/kconfig.html

[9] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,

and Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: A text-

based approach to classify change requests. In Proceedings of the 2008

Conference of the Center for Advanced Studies on Collaborative Re-

search: Meeting of Minds, CASCON '08, pages 23:304�23:318, New

York, NY, USA, 2008. ACM.

[10] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. An

empirical analysis of software vendors' patch release behavior: impact of

vulnerability disclosure. Information Systems Research, 21(1):115�132,

2010.

[11] Gabriele Bavota. Mining unstructured data in software repositories:

Current and future trends. In Software Analysis, Evolution, and Reengi-

neering (SANER), 2016 IEEE 23rd International Conference on, vol-

ume 5, pages 1�12. IEEE, 2016.

[12] David Binkley. Using semantic di�erencing to reduce the cost of regres-

sion testing. In Software Maintenance, 1992. Proceerdings., Conference

on, pages 41�50. IEEE, 1992.

[13] David Binkley, Rob Capellini, L Ross Raszewski, and Christopher

Smith. An implementation of and experiment with semantic di�erenc-

ing. In Software Maintenance, 2001. Proceedings. IEEE International

Conference on, pages 82�91. IEEE, 2001.

[14] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. Au-

tomatic patch-based exploit generation is possible: Techniques and im-

plications. In Security and Privacy, 2008. SP 2008. IEEE Symposium

on, pages 143�157. IEEE, 2008.

[15] Raymond P.L. Buse and Westley R. Weimer. Automatically document-

ing program changes. In Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering, ASE '10, pages 33�42,

New York, NY, USA, 2010. ACM.

[16] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S P s re-

anu, Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic exe-

cution for software testing in practice: preliminary assessment. In Pro-

ceedings of the 33rd International Conference on Software Engineering,

pages 1066�1071. ACM, 2011.

[17] Cristian Cadar and Koushik Sen. Symbolic execution for software test-

ing: three decades later. Communications of the ACM, 56(2):82�90,

2013.

[18] Russell Clarke, David Dorwin, and Rob Nash. Is open source software

more secure? Homeland Security/Cyber Security, 2009.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient smt solver. In

International conference on Tools and Algorithms for the Construction

and Analysis of Systems, pages 337�340. Springer, 2008.

[20] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and

Stéphane Ducasse. Untangling �ne-grained code changes. In Software

Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd In-

ternational Conference on, pages 341�350. IEEE, 2015.

[21] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,

and Martin Monperrus. Fine-grained and accurate source code di�er-

encing. In Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering, pages 313�324. ACM, 2014.

[22] Jaroslav Fowkes, Razvan Ranca, Miltiadis Allamanis, Mirella Lapata,

and Charles Sutton. Autofolding for source code summarization. arXiv

preprint arXiv:1403.4503, 2014.

[23] Debin Gao, Michael K Reiter, and Dawn Song. Binhunt: Automatically

�nding semantic di�erences in binary programs. In International Con-

ference on Information and Communications Security, pages 238�255.

Springer, 2008.

[24] Emanuel Giger, Martin Pinzger, and Harald C Gall. Comparing �ne-

grained source code changes and code churn for bug prediction. In

Proceedings of the 8th Working Conference on Mining Software Reposi-

tories, pages 83�92. ACM, 2011.

[25] Ahmed E Hassan. The road ahead for mining software repositories.

In Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48�57.

IEEE, 2008.

[26] Kim Herzig and Andreas Zeller. The impact of tangled code changes.

In Mining Software Repositories (MSR), 2013 10th IEEE Working Con-

ference on, pages 121�130. IEEE, 2013.

[27] James Wayne Hunt and MD MacIlroy. An algorithm for di�erential �le

comparison. Bell Laboratories New Jersey, 1976.

[28] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.

Summarizing source code using a neural attention model. In Proceed-

ings of the 54th Annual Meeting of the Association for Computational

Linguistics, volume 1, pages 2073�2083.

[29] Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: �nding

unpatched code clones in entire os distributions. In Security and Privacy

(SP), 2012 IEEE Symposium on, pages 48�62. IEEE, 2012.

[30] Patrick Kreutzer, Georg Dotzler, Matthias Ring, Bjoern M Esko�er, and

Michael Philippsen. Automatic clustering of code changes. In Proceed-

ings of the 13th International Conference on Mining Software Reposito-

ries, pages 61�72. ACM, 2016.

[31] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique

Rebêlo. Symdi�: A language-agnostic semantic di� tool for imperative

programs. In International Conference on Computer Aided Veri�cation,

pages 712�717. Springer, 2012.

[32] Shuvendu K. Lahiri, Kapil Vaswani, and C A. R. Hoare. Di�erential

static analysis: Opportunities, applications, and challenges. In Pro-

ceedings of the FSE/SDP Workshop on Future of Software Engineering

Research, FoSER '10, pages 201�204, New York, NY, USA, 2010. ACM.

[33] Chris Lattner. Llvm and clang: Next generation compiler technology.

In The BSD Conference, pages 1�2, 2008.

[34] Hongzhe Li, Hyuckmin Kwon, Jonghoon Kwon, and Heejo Lee. A scal-

able approach for vulnerability discovery based on security patches. In

International Conference on Applications and Techniques in Informa-

tion Security, pages 109�122. Springer, 2014.

[35] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.

Vulpecker: an automated vulnerability detection system based on code

similarity analysis. In Proceedings of the 32nd Annual Conference on

Computer Security Applications, pages 201�213. ACM, 2016.

[36] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of

code transforms and search spaces for automatic patch generation sys-

tems. 2016.

[37] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing

of software patches. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, pages 235�245. ACM, 2013.

[38] Miles A McQueen, Trevor A McQueen, Wayne F Boyer, and May R

Cha�n. Empirical estimates and observations of 0day vulnerabilities.

In System Sciences, 2009. HICSS'09. 42nd Hawaii International Con-

ference on, pages 1�12. IEEE, 2009.

[39] Na Meng, Miryung Kim, and Kathryn S McKinley. Systematic editing:

generating program transformations from an example. ACM SIGPLAN

Notices, 46(6):329�342, 2011.

[40] Martin Monperrus. Automatic software repair: a bibliography. Univer-

sity of Lille, Tech. Rep. hal-01206501, 2015.

[41] Alessandro Murgia, Giulio Concas, Michele Marchesi, and Roberto

Tonelli. A machine learning approach for text categorization of �xing-

issue commits on cvs. In Proceedings of the 2010 ACM-IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement,

page 6. ACM, 2010.

[42] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tu-

dor Dumitras. The attack of the clones: A study of the impact of

shared code on vulnerability patching. In Security and Privacy (SP),

2015 IEEE Symposium on, pages 692�708. IEEE, 2015.

[43] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of

program analysis. Springer, 2015.

[44] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. C

aramel: detecting and �xing performance problems that have non-

intrusive �xes. In Proceedings of the 37th International Conference on

Software Engineering-Volume 1, pages 902�912. IEEE Press, 2015.

[45] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Ya-

maguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vcc�nder:

Finding potential vulnerabilities in open-source projects to assist code

audits. In Proceedings of the 22nd ACM SIGSAC Conference on Com-

puter and Communications Security, pages 426�437. ACM, 2015.

[46] Suzette Person, Matthew B Dwyer, Sebastian Elbaum, and Corina S

P�as�areanu. Di�erential symbolic execution. In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of software

engineering, pages 226�237. ACM, 2008.

[47] Benjamin C Pierce and David N Turner. Local type inference. ACM

Transactions on Programming Languages and Systems (TOPLAS),

22(1):1�44, 2000.

[48] Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and

Vinay Augustine. Dex: A semantic-graph di�erencing tool for study-

ing changes in large code bases. In Software Maintenance, 2004. Pro-

ceedings. 20th IEEE International Conference on, pages 188�197. IEEE,

2004.

[49] Sarah Rastkar and Gail C. Murphy. Why did this code change? In Pro-

ceedings of the 2013 International Conference on Software Engineering,

ICSE '13, pages 1193�1196, Piscataway, NJ, USA, 2013. IEEE Press.

[50] Baishakhi Ray and Miryung Kim. A case study of cross-system porting

in forked projects. In Proceedings of the ACM SIGSOFT 20th Interna-

tional Symposium on the Foundations of Software Engineering, FSE '12,

pages 53:1�53:11, New York, NY, USA, 2012. ACM.

[51] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology

& Policy, 12(3):23�49, 1999.

[52] Eric Rescorla. Security holes... who cares? In USENIX Security. Wash-

ington, DC, 2003.

[53] Eddie Antonio Santos and Abram Hindle. Judging a commit by its cover:

correlating commit message entropy with build status on travis-ci. In

Proceedings of the 13th International Conference on Mining Software

Repositories, pages 504�507. ACM, 2016.

[54] Guido Schryen. Security of open source and closed source software: An

empirical comparison of published vulnerabilities. 2009.

[55] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Fix me up:

Repairing access-control bugs in web applications. In NDSS, 2013.

[56] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim.

How do software engineers understand code changes?: An exploratory

study in industry. In Proceedings of the ACM SIGSOFT 20th Interna-

tional Symposium on the Foundations of Software Engineering, FSE '12,

pages 51:1�51:11, New York, NY, USA, 2012. ACM.

[57] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung.

Relink: Recovering links between bugs and changes. In Proceedings of

the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE '11, pages 15�25,

New York, NY, USA, 2011. ACM.

[58] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Model-

ing and discovering vulnerabilities with code property graphs. In Secu-

rity and Privacy (SP), 2014 IEEE Symposium on, pages 590�604. IEEE,

2014.

[59] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim.

Interactive code review for systematic changes. In Proceedings of the

37th International Conference on Software Engineering-Volume 1, pages

111�122. IEEE Press, 2015.

	Introduction
	Motivation
	Background
	Software Security Overview
	Vulnerabilities and Exploits
	Software Patching
	Vulnerability Disclosure

	The Open-Source Software Model
	Source Code Diff
	Source Code Analysis
	Static Analysis

	Problem Statement
	State of the Art
	Vulnerability finding and exploitation
	Easing the patching process
	Software Evolution
	Source-code Patches Analysis

	Goals
	Contributions

	Approach
	Non-Disruptive Patches
	Formal Definition
	Identifying ndps
	Non-Conditional Statements
	Modified Conditional Statements
	Inserted Conditional Statements
	Deleted Conditional Statements

	GitRDone Design
	Preprocessing
	Parsing
	Fine-Grained Diff
	Patch Analysis
	Identification of Error Basic Blocks
	Non-Conditional Statements
	Inserted Conditional Statements
	Modified Conditional Statements
	Deleted Conditional Statements

	Additional Heuristics

	Alternative Ideas and Solutions

	Implementation Details
	Input handling and Preprocessing
	Parsing and Joern Extensions
	Functions AST Extraction
	CFG and Basic Blocks
	Reaching Definitions
	Type Inference

	Functions Diff
	Visualization

	Patch Analysis

	Evaluation
	Experiment 1: Large-Scale Evaluation
	Experiment 2: Evaluation on CVEs
	Experiment 3: Zero-Days in Vendor Kernels
	Performance Considerations
	Summary of Results

	Conclusions
	Limitations
	Future Work

	References

