
Performing Kick Detection on a Soccer Player: a
Classification Approach

TU Delft - IN4398: Internet of Things Seminar - final report

E. Camellini
4494164

E.Camellini@student.tudelft.nl

K. Dreef
4107861

K.Dreef@student.tudelft.nl

ABSTRACT
In sports nowadays it is getting more common to gather data
on how a player performs during a match in real-time, and
to show this information to coaches and fans. In soccer this
is less present: data is used to measure performance, but of-
ten this is done only to provide information to coaches and
trainers. Furthermore, current systems don’t say anything
about certain motions of the player like kicking. We propose
a system that is able to sense the acceleration of soccer play-
ers’ legs and advertise it in real-time to a PC using Bluetooth
Low Energy. On the PC side we implemented a classification
algorithm, using k-Nearest Neighbors, that is able to receive
the sensed data and use it to classify the player’s movement
into three different classes, namely: standing still, running,
and kicking. As features it uses the maximum acceleration
magnitude reached during a fixed time window, for each of
the legs. The results show that the system can classify the
data accurately with a misclassification rate of 1.25%, on
average. Further testing also indicates that using these fea-
tures allows the training set of a player to be used for the
classification on any other player.

1. INTRODUCTION
Nowadays soccer teams are using more and more tools to
gather information on the performance of the players dur-
ing trainings and matches. Most of the collected data is
analysed over-time and used to improve the players’ skills.
It would be interesting to have players’ data available in
real-time during a game and to be able to present this data
not only to coaches and trainers, but also to the fans. For
example it could be useful to measure the heart rate of a
player during a penalty kick, or to detect when and how
fast a player kicks the ball and provide these data to the
fans and to the team staff through a screen in real-time.
This is already done in other sports, like tennis (e.g. speed
of serving), but not in soccer.

We noticed that the devices that are currently available for
soccer focus on the physical conditions of the players, but

there are no tools available that focus on providing data in
real-time to the fans, and in particular none of the available
tools can be used to collect data on the movement of the
legs or on the kicking statistics during a game. A system
to be used to gather and provide this kind of data should
consist of a small sensing device, that must be attached to
the player’s leg without influencing the playing performance,
and should be able to send the gathered data in real-time in
order to provide useful information.

The goal of this work is to design a system that can classify
when a soccer player is running and kicking in real-time,
and to implement the classification algorithm for the kick
detection. The main research challenges are:

• Determining a way to classify the state of the player
(running, kicking or none of the two) using the data of
a leg motion sensor.

• Finding a small-enough sensing device equipped with
a motion sensor, a BLE module and a battery that
can last for at least 45 minutes (one half of a football
match) while gathering and sending data at a high
enough frequency in order to guarantee an accurate
classification;

Sections 1.1, 1.2 and 1.3 focus on describing in a clearer way
our motivations, the related state of the art and the research
contribution of this work. Section 2 describes the methods
we followed, Section 3 focuses on the experimental results
and on their analysis. Ultimately, we state our conclusions
in Section 4 .

All the code we wrote is publicly available1. In the resources
of the PC code repository we also published all the data
that we gathered, and the data set that we used for the
experiments.

1.1 Motivation and use cases
Having motion data from the players’ legs in real-time and
being able to detect when a player kicks could add innovation
to a soccer game experience. Examples of use cases could
be:

• Real-time statistics: the motion data gathered from
the legs of a player could be used to determine some

1https://bitbucket.org/in4398iot/

1

https://bitbucket.org/in4398iot/


information about a kick: its power or the acceleration
of the ball. These data can be useful to the coach and
can be directly shown to the fans.

• User interaction: properly designed apps on smart
devices could use these real-time data to perform some
actions that depend on the state of the player (e.g.
running, kicking). For example, smart devices of peo-
ple at home or at the stadium could vibrate with an
intensity that follows the running speed and the kicks
of the player: this is what nowadays the joystick does
while playing a soccer video game, for example.

Gathering more data with the same devices could enable
more use cases (e.g. another sensor of the same kind could
keep track of the heart-rate profile of the player, and this
could be correlated with the kick information).

1.2 Related work
In this field there has already been done a lot of research
and some popular devices are already available. The main
professionally used system is the Viper Pod 2: this system
is used by coaches and trainers to determine the player and
team condition live, but it gathers no data related to the leg
motion. For other sports there are sensors like Zepp3, which
focuses on collecting data on certain motions of the player,
but this system is not available for soccer and its usage in
other sports is limited to one sensor for each player at the
moment. To our knowledge there are also no other systems
that could be used to provide real-time data to soccer fans.

For what concerns the kick detection, [5] shows a method to
do it using visual data gathered from a smartphone camera,
but as far as we know no work has been done in this field
using motion data gathered directly from the legs of a soccer
player.

1.3 Contribution
The main contributions of this work with respect to the
state of the art in this field are the research performed on
the kick detection, the idea of sensing the players’ motion by
applying sensors directly on the legs, and the idea of doing
classification on data gathered in real-time using only BLE
advertising, without the need for the sensing devices to run
a connectable Bluetooth service. More details on each one
of these innovations can be found in the Sections 2, 3 and 4.

We also contribute to the future research in this field by
publishing all the code that we wrote and especially the
data set that we built, together with the raw sensor readings:
these can be used to perform other experiments in this field.

2. METHODS AND IMPLEMENTATION
2.1 The system
The envisioned system should be player-friendly and easy-
to-use, meaning that the motion sensors need to be easy
to place onto a player’s leg without hindering the player’s
performance. The data gathered by the sensors should be
sent to a PC in real-time. The PC runs software that is

2http://statsports.com/technology/viper-pod/
3http://www.zepp.com/

able to process the data and output the results to a screen.
In this work, as stated in Section 1, the goal is to create
a program that focuses on detecting when the player kicks,
meaning that we need to solve a classification problem.

To perform the kick detection using the motion data of the
leg there are two choices: the player can be equipped with
one sensor on the kicking leg or with two sensors, one on
each leg. We gathered data with both the approaches and
after some exploration we decided to adopt the second one,
so to use two sensors (see Section 2.4 for details).

The sensing board we used to design the system is an nRF51
board from Nordic[4] equipped with an LIS3DSH motion
sensor and a BLE module.

We decided to send the sensor data in real-time from the
sensing boards to the PC using Bluetooth Low Energy (BLE)
advertising packets, in order to avoid the need to establish a
BLE connection between the two devices. The PC puts the
received data in a fixed-size buffer: the size of this buffer is
the size of a batch of data needed to output a classification
result, and we will call it batch size. When the buffer is full
the PC flushes the data that it contains, passing them to
the classification algorithm.

The output of the classification system can then be used for
the use cases that we described in Section 1.1.

A high level architecture of the system design is shown in
Figure 1.

Figure 1: System overview

For the classification we decided to use a supervised ma-
chine learning approach: the k-Nearest Neighbors (k-NN)
algorithm. The data are classified in three categories:

1. Standing still: the player is standing still or making
negligible leg movements;

2. Running: the player is running;

3. Kicking: the player is kicking, one leg stays still while
the kicking leg accelerates.

The last category is of course the one we are most interested
in.

2



Since k-NN is a supervised machine learning algorithm it is
important to collect pre-labeled data for every class and to
test if different training sets have an impact on the preci-
sion of the classification. This aspect is important, because
depending on the results that we obtain with these tests we
can check if the system needs to be retrained for every player
or if a single training set can be used for almost all players.

We decided to implement the PC side components using the
Python programming language.

2.2 Board and communication
The nRF51 board is programmed to perform two main func-
tions:

• Gather accelerometer data from the leg movement of
the player;

• Send the sensed data to the PC side of the system.

In order to send the data in the most easy and low-power
way we decided to embed them in the Bluetooth advertising
packets, so that there is no need to run a Bluetooth ser-
vice on the board. In this way the sensed data can also be
retrieved by the PC without the need to establish a Blue-
tooth connection: it is sufficient to extract them from the
advertising packets that are received periodically.

The two main constraints that the Nordic SDK, the Nordic
SoftDevice [3] and the BLE specification impose on adver-
tising data through BLE are:

• A maximum advertising frequency of 50Hz [3];

• A maximum payload of 31 bytes, that must contain
also the device name and the header for every field in
it [1].

The firmware we programmed emits Bluetooth advertising
packets with a payload that contains six 16-bits integer val-
ues and it uses a 50 Hz advertising frequency. A sensor
sample is composed by three 16-bits values (i.e. x, y, z ac-
celerations), so the described setup corresponds to two sam-
ples sent every 20 ms (i.e. 100Hz sampling frequency, 50Hz
advertising frequency).

For what concerns the battery, the board is equipped with a
supercapacitor as power source. Upon fully charged this ca-
pacitor can deliver 2.5V, which will decrease upon time. The
board (nRF51) needs at least 1.8V to continue to operate,
meaning it can supply 1.944 mAh.

2.2.1 BLE on the PC side
The focus of this work, for what concerns topic that are
not related to the classification, is not to build a real-time
prototype (as described in Section 1 and for the reasons
described in Section 2.3), but to design the system, so to
test and motivate all our decisions: for this reason we also
implemented a simple version of the module that can be
used for the BLE communication on the PC side.

It uses the linux BlueZ protocol stack4 tools to read the ad-
vertised values in real time: the commands used are hcitool
lescan (low energy scan) to read the advertising packets and
hcidump to see their byte representation and to extract the
needed byets from the advertising payload. In a working
prorotype, this program could easily pass the sensor sam-
ples to the trained classifier in real-time in order to obtain
the corresponding classification.

2.3 Motion sensing
For the leg acceleration sensing we chose to use the LIS3DH
sensor equipped on the nRF51, as stated in Section 2.1.

The board contains, next to a nRF51 SoC, the LIS3DH [2],
which is a very low-power accelerometer. This accelerometer
is hooked up to the nRF51 in a master-slave configuration in
which it is the slave. It can then be programmed to send an
interrupt to the nRF51 every time the sensor values change.
The values that should be written to the register to set it
up with the correct settings can be found in Table 1.

Register Value
CTRL REG1 0x57
CTRL REG3 0x40
CTRL REG4 0x80
CTRL REG5 0x0C
INT1 CFG 0x7F

Table 1: Register values to initialize the LIS3DH accelerom-
eter.

Ultimately, because of time constraints, and lack of resources
and documentation we weren’t able to get this setup to work.
The LIS3DH needs an extra input signal (CS) to be able
to read/write from/to the registers using SPI, and it isn’t
standardized in the nRF51 SDK. There is only a SS signal
left in the SDK which you can connect CS to, but it has
a different purpose than CS. This problem emerged while
trying to create a connection between the accelerometer and
the nRF51 in a standard master-slave configuration.

Due to the described problems related to the data gathering
phase through the board, we decided to adopt a different
solution that still allowed us to perform the classification
experiments on real-data: we used an Android application
to gather motion data from the players. This application
senses the accelerometer data for the x, y and z axes from
the sensor included in the smart device on which it is in-
stalled, and saves these data into a file, together with a label
and a time-stamp. The label must be pre-set from the user
interface and can be ‘S’, ‘R’ or ‘K’ (standing still, running
or kicking respectively): when it is set the app starts logging
the sensors data with a frequency of 100Hz.

We decided not to modify the system setup that we designed
(see Section 2.1), so we equipped the soccer player with two
devices (i.e. Smartphones): one on each leg.

2.3.1 The data set
Merging the data from the two separate log files into a sin-
gle data set that contains the label and both left and right

4http://www.bluez.org/

3



accelerometer data, as required by the k-NN classifier, was
done through a Matlab script. Because of small time dif-
ferences between the sample timestamps of the two log files
the data needed to be interpolated, in order to align them
and at to make sure that at every line in the final data set
contains data from both the sensors.

The data also needed some pre-processing before it was
ready to be used for the classification. The kicking data as
can be seen in Figure 2c contains many parts where nothing
happens. This is data collected in between the various kicks,
and is of course not needed as training data for the kicking,
so we had to remove some useless sensor samples. Further-
more, the beginning and ending parts of the data needed to
be removed to gain a good training set, because they contain
noise due to equipping the player with the sensing devices
after having started the application and having pressed the
correct button.

After the described pre-processing is done the data set is
ready to be used to train or test the classifier. Its composi-
tion (i.e. columns) can be seen in Table 2.

For more details on what data we gathered for every exper-
iment see Section 3.

x-left y-left z-left x-right y-right z-right label

Table 2: Header of the built data set: the first three columns
are the acceleration values of the left leg, for the three axes,
then the consequent columns are the right leg values and the
last one is the label (‘S’, ‘R’ or ‘K’).

2.4 Classification
As mentioned in Section 2.1 the classification is done using
the supervised machine learning algorithm called K Nearest
Neighbours (k-NN). This uses a training set that contains
data from the sensors with a predetermined label. From
this data, features are extracted and then used to classify
new incoming instances. In this section we describe how we
implemented the algorithm, which features we decided to
use and why.

The k-NN training consists in saving the features computed
for the training set instances, together with the correspond-
ing known label. A list of n computed features can be seen
as a point in an n-dimensional space: from now on we will
call distance the distance between two of these points.

The classification of new data is then performed in a few
steps: First, the features are extracted from the incoming
data to obtain a new feature list. Second, the distances
are calculated between the computed feature list and all
the saved training feature lists. Third, with the computed
distances it is possible to figure out which instances in the
training set are the most similar (the nearest) to the one to
classify.

Finally, the instance will be classified with the most common
label in the K closest similar training instances (neighbours).

In our implementation of the k-NN the features are not ex-
tracted for every single line in the data set, but for batches

of them. A batch is a fixed-size set of consequent lines that
have the same label. The training set is simply split in
batches, and for every batch the features are computed and
stored as described. Before a label transition (e.g. when the
player starts running) it could happen that the last samples
of the considered label are not enough to fill a batch: in this
case they are discarded (the same is done with the testing
sets). In a real prototype, the sensor samples collected in
real-time should be also grouped in batches: this could be
done using a buffer as described in Section 2.1.

The features that we decided to use for the classification are
the maximum magnitudes of the acceleration of the left and
the right leg in the considered batch of data. Equation 1
shows how the magnitude is computed on a single sensor
sample of a single leg, then the maximum value obtained
over a batch is extracted as feature.

The decision to use two sensors was based on the data shown
in Figure 2. The data that are shown here are the sensor
data for each leg during the different classes. It can be seen
that the magnitude of the two legs differ significantly de-
pending on the activity, and because of that we concluded
that the magnitude of the acceleration of both legs could be
an interesting feature for classifying the data. The intuition
is: by using two sensors it should be clear that during a
kick one magnitude is relatively small in comparison with
the other one (the one of the kicking leg). This would sug-
gest that the movement should be classified as a kick. Using
one sensor it would be problematic to determine the differ-
ence between kicking and running, because there is no way
of knowing what the other foot does. We performed some
tests and the outcomes suggest that the difference in the
magnitude of the kicking leg acceleration while running or
during a kick is not significant enough.

What we just described is also the reason why we need to
use batches and to select the correct batch size: the features
we use must be computed on a time window that includes
the whole movement of a kick, and the movement of both
legs while running.

magnitude =
√

x2 + y2 + z2 (1)

Another feature that we tested is the frequency with which
the acceleration oscillates: we tried to compute the Fourier
transform of the acceleration profile for each leg. We did it
because the running movement is periodic, while kicking and
standing still movements are not, so this distinction could
have helped in the classification. The problem with Fourier
is that it needs a considerably larger window size to give
accurate results (approximately 4 to 5 times the time that
a kick takes). Because of that, the kick detection would be
difficult to be performed in real time, so we discarded this
approach.

For the described reasons, we decided to use only the two
magnitudes as features, and in this way it is also easy to plot
the instances in a two-dimensional space in order to check
if the features we selected are really useful to distinguish
the three clusters (i.e. three classes). Because of that, we

4



(a) Standing still data

(b) Running data

(c) Kicking data

Figure 2: Different sorts of training data.

selected to use the Euclidean Distance as distance measure
between couple of features: it works good in a situation with
two features like this one.

In this implementation of the k-NN it is possible to tune
the algorithm by adjusting the batch size and the number of
neighbors to consider (the ‘k’ parameter). A smaller batch
size gives the end user a system that gives an updated classi-
fication more frequently, but it also means less data for every
batch, which can directly result in a decrease in accuracy.
The optimal batch size is in the end a trade off between
classification frequency and accuracy, and it should include
the whole kicking movement.

To evaluate the accuracy of the classification we adopted
the k-folds (10-folds in particular) and leave-one-out cross
validation techniques, and also the classic training-testing
method on different data sets. By applying these techniques
it is possible to see how accurate the system is in classifying
the data without falling into an overfitting scenario. See
Section 3 for more details on how we evaluated the accuracy
of the system in every experiment, and on the results that
we obtained.

3. EVALUATION
In this section we show how we tested and evaluated the
classification system described in Section 2.4.

3.1 Experiment 1: features and cross-validation
This first experiment consists in gathering data from two
players to build two distinct data sets. K-folds and leave-
one-out cross-validation techniques are then used to evaluate
the classification results on the single data sets. In this way
the k-NN is trained and tested on the same player.

3.1.1 Experiment design
For this experiment we gathered data from two different
players running the sensors for one minute for every class.
After the data pre-processing, as described in Section 2.3,
we obtained two data sets (one for each player) composed
as follows:

• 130000 standing still (i.e. ‘S’ labeled) samples;

• 130000 running (i.e. ‘R’ labeled) samples;

• 40000 kicking (i.e. ‘K’ labeled) samples;

We also created a second, normalized (or “fair”), version of
the data set for each player where every label has 40000
samples, in order to avoid to over-train some of them with
respect to the other ones.

We first trained the classifier on both the data sets and plot-
ted the features to see how distinct are the three classes.
Eventually we applied k-folds (with 4 and 10 folds) and
leave-one-out cross-validation techniques on each data set,
trying to tune the batch size. We chose a K value of three
for the k-NN: this number of neighbours is sufficient to de-
termine the correct class in this situation, where the clusters
are distinct enough, and it is the value that resulted in the
best accuracy.

5



3.1.2 Results
The plot of the features after the training on the first player
is shown in Figure 3c. We can see that using a time window
of 100 samples (i.e. 100 samples per batch) makes the classes
more distinct: the more the batch size is shrink, the less
distinct are the three classes (see Figures 3b and 3a) and this
can result in wrong classifications, but it also mean that the
system can classify faster in a real-time scenario because it
needs a smaller amount of samples to output a classification.
We obtain the same results for the second player, as shown in
Figure 4. For all these plots we used the normalized versions
of the data sets, with the same number of batches for every
class.

We applied the K-folds cross validation technique with 4 and
10 folds and a batch size of 100 on the normalized data set,
we counted the wrong classifications over the total ones (i.e.
misclassification rate) and we obtained the following results
for both the players:

• Standing still is always classified correctly;

• Kicking and running are always classified correctly for
one player, and for the other there is only one misclas-
sification for both the classes over 40 classified batches.
This result states that misclassifications, on the data
we gathered, happen on average in 1.25% of the cases
(1 time over 80).

We obtained the same results (in terms of misclassification
percentage) using the not normalized data set, so having a
bigger amount of samples for some of the classes seems to
not affect the classification.

Shrinking the batch to 50 samples results in doubling the
number of batches to classify over the same amount of data,
and this also reflects on the accuracy: kicking is misclassi-
fied 4 times and running 2 times (both over 160 classified
batches), so misclassifications happen in the 2.5% of the
cases.

This effect even is more evident when we shrink the batch
size to 25: the misclassifications of the kicks happen in more
than 5% of the cases.

Since the algorithm is fast we also tried to apply the leave-
one-out cross-validation technique and the results are the
same.

3.2 Experiment 2: training and testing on dif-
ferent players

With this experiment we wanted to prove that the classifi-
cation accuracy is not significantly influenced by the player
on which the system is trained, so that it is possible to train
the classifier in a general way in order to obtain a model
that can be used for anyone.

3.2.1 Experiment design
The data sets we used for this experiments are the same
described in Section 3.1.1. To prove that is possible to use
the same model for many players we trained the classifier

(a) Features with batch size 25 - player 1.

(b) Features with batch size 50 - player 1.

(c) Features with batch size 100 - player 1.

Figure 3: Different sorts of training data.

on the data set of the first player and used the data set of
the second one for the testing, then we inverted the roles of
the two sets. If the data set can be used for all players the

6



Figure 4: Features with batch size 100 - player 2.

results should be similar.

3.2.2 Results
We show the results of the experiment applied using a batch
size of 100. The differences in the accuracy due to changing
the batch size are the same as described in Section 3.1.2.

Training on the first player’s data set and testing on the
second one resulted in no misclassifications, while the oppo-
site setup resulted in 1 misclassification for the kicking class
and one for the running one, both over 40 classified batches.
This means that misclassifications happen in 1 over 80 cases
for both the classes, so in the 1.25% of the cases.

The result obtained is the same that we had with the first
experiment, as described in Section 3.1.2, so the accuracy of
the classifier is not influenced by the players on which the
model is trained and tested.

3.3 Experiment 3: left foot kicking
With this experiment we wanted to prove that the classifier
works also for a left-footed player if trained on data gathered
from other left-footed players.

3.3.1 Experiment design
For the standing still and running classes we used the same
data set of the first player that we already described in Sec-
tion 3.1.1, while for the kicking we gathered 2500 new sam-
ples from the same player kicking with the left foot. We
also normalized this new data set in order to have the same
number of features for every class.

We first trained the classifier and plotted the features to
see how distinct are the three classes in the left-kicking
case. Eventually we applied k-folds and leave-one-out cross-
validation techniques on it.

3.3.2 Results
We show the results of the experiment applied using a batch
size of 100. The differences due to changing the batch size

or to using the not normalized data set are the same as
described in Section 3.1.2.

The plot of the features after the training is shown in Fig-
ure 5 (the two axes are inverted in order to make it consistent
with the right kicking plots shown in Section 3.1.2).

Figure 5: Features with batch size 100 using other foot to
shoot - player 1.

We applied the K-folds (with 4 and 10 folds) and the leave-
one-out cross validation techniques on the normalized data
set, and we obtained only 1 misclassification over 25 classi-
fied batches in the kicking situation.

This data set is of course small with respect to the other
ones, but the result is enough to prove that the classifier
works also for left kicking scenarios.

3.4 Experiment 4: power consumption
We decided to perform tests on the nRF51 board although
we didn’t use it for gathering the data and we didn’t build
a working prototype. The purpose of this experiment is to
check if the power capabilities of the board are sufficient
to support the system in a real-scenario: to satisfy this re-
quirement the battery should last at least 45 minutes (the
half-time of a football game).

3.4.1 Experiment design
The board is equipped with the firmware described in Sec-
tion 2.2, so it advertises packets at a 50Hz frequency through
Bluetooth Low Energy, and every packet contains two ac-
celerometer samples of three 16-bit integer values (i.e. one
for each axis). Because of the reasons describe in Section 2.3,
the values sent are not real sensor readings, meaning that
the accelerometer is also not used in this test case.

The experiment consists in starting the firmware execution
when the battery is fully charged and timing how much time
it lasts. We repeated this procedure three times.

3.4.2 Results
With this configuration the battery of the board lasted for
an average of 38 minutes over the three attempts with a

7



standard deviation of around 1 minute. This amount of
time is still not enough to make the system run for the whole
half-time of a football match.

In this experiment the power consumption due to the ac-
celerometer was left out, meaning that the power consump-
tion of the board could be in reality a bit higher. Ultimately,
a small improvement in the battery size and in the board
power efficiency could make possible to have the board run-
ning for half a game (45 minutes). We think that the battery
life should be improved of nearly the 20% to last enough.

3.5 Summary of results
The results of the experiments show that, when the right
batch size is chosen, the accuracy of the classifier is surpris-
ingly good. The results show that a batch size of 100 is
the best choice because of the accuracy obtained, and it can
classify the player’s state quick enough so it would be good
also in a real-time scenario (i.e. one classification per second
with a 100Hz sampling rate).

Smaller batch sizes result in a faster classification, but are
also less accurate. This is due to the fact that in less than
one second it is difficult to gain enough information to de-
termine the state of the player: a kick takes more or less one
second and batches that contains samples spread over less
than this time could have acceleration profiles that are not
meaningful.

The accuracy does not depend from the player on which
the system acts and the classification can be used indiffer-
ently for left and right-footed players, provided that it has
been trained with data from the correct one of the two pro-
files. A model that mixes features from left and right kick-
ing samples should lead to meaningless results. This is the
outcome that we found more surprising, because it shows
that the system behaves really good and it is does not show
overfitting-related behaviours.

For what concerns the board, we showed that with this con-
figuration it is not capable to last till match half-time, but
this goal could be reached by slightly enhancing the capac-
ity of the battery. It could be still usable for the penalty
scenario, if activated only during a penalty situation. We
were pleasantly surprised that it was possible to send values
in real-time at a high-enough frequency (50Hz, two samples
per packet) to perform a good classification, while maintain-
ing a fairly good battery life on such a small supercapacitor,
but it still needs further optimization and a larger battery.

It needs to be said that, even though the results are surpris-
ingly good, the data set can still be considered small and
more widespread tests should be performed.

4. CONCLUSION AND FUTURE WORK
In this work we implemented a software capable of doing
kick detection on a soccer player. It uses the k-NN algo-
rithm, adapted to our needs: with a batch size of 100 sam-
ples, utilizing the data of 2 sensors (one for each leg), and
extracting the maximum acceleration magnitudes over data
batches for every leg as k-NN features, it is possible to accu-
rately identify when the player kicks, with a misclassification
rate of 1.25%.

We also designed a complete system that includes the de-
scribed classifier, and that can be used to perform kick de-
tection in real-time. We made tests using an nRF51 sensing
board, to proof that is possible to send data through Blue-
tooth advertising at a high enough frequency in order to
perform a good classification. The results show that it is
low-power enough to be active for 38 minutes when send-
ing two samples every 20ms, so to support one classification
per second when a batch size of 100 is used. With a small
improvement it can be used for an entire half of a football
match, and charged or substituted during the break. This
is possible because the computational intensive part is done
on a powerful computing device that receives all the data of
the sensors (i.e. the k-NN is run on a PC).

4.1 Future work
While the initial results are promising we need to note that
a lot of future work should be done, in order to give more
significance to the results that we obtained.

The data set and the test group were small (i.e. 2 players,
nearly 200000 sensor samples for each one of them) and be-
cause of that the results can not be generalized to all the
soccer players. More tests should be done with a larger test
group to see if one set of training data would work for all
players.

Depending on the outcome of a test with larger test group
and data set, it would also be interesting to take a look at
an unsupervised learning approach instead of the supervised
learning which is used now. With a unsupervised machine
learning algorithm like k-means, that is able to automati-
cally determine the cluster that are present in the data, the
system would probably adjust better to the specific style of
shooting of different players.

This work can be seen as a proof of concept, but we didn’t
build a working prototype. So other future work could be
to build the whole system as designed in Section 2.1, and to
implement tools that can use the data obtained from it (e.g.
applications for smart devices that can connect to the PC
part of the system, reachable through the Web, in order to
enable the use cases described in Section 1.1).

5. REFERENCES
[1] BLE Advertising tutorial.

https://devzone.nordicsemi.com/tutorials/5/

a-beginners-tutorial-advertising/. [Online;
accessed 17-Nov-2015].

[2] Documentation LIS3DH.
http://www.st.com/web/en/resource/technical/

document/datasheet/CD00274221.pdf. [Online;
accessed 17-Nov-2015].

[3] nRF51 SDK 9.0.0. http://infocenter.nordicsemi.
com/index.jsp?topic=%2Fcom.nordic.infocenter.

sdk51.v9.0.0%2Findex.html. [Online; accessed
17-Nov-2015].

[4] nRF51 Series SoC. https://www.nordicsemi.com/eng/
Products/nRF51-Series-SoC. [Online; accessed
17-Nov-2015].

[5] T. Han, J. Alexander, A. Karnik, P. Irani, and
S. Subramanian. Kick: Investigating the use of kick

8

https://devzone.nordicsemi.com/tutorials/5/a-beginners-tutorial-advertising/
https://devzone.nordicsemi.com/tutorials/5/a-beginners-tutorial-advertising/
http://www.st.com/web/en/resource/technical/document/datasheet/CD00274221.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00274221.pdf
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Findex.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Findex.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk51.v9.0.0%2Findex.html
https://www.nordicsemi.com/eng/Products/nRF51-Series-SoC
https://www.nordicsemi.com/eng/Products/nRF51-Series-SoC


gestures for mobile interactions. In Proceedings of the
13th International Conference on Human Computer
Interaction with Mobile Devices and Services,
MobileHCI ’11, pages 29–32, New York, NY, USA,
2011. ACM.

9


	Introduction
	Motivation and use cases
	Related work
	Contribution

	Methods and implementation
	The system
	Board and communication
	BLE on the PC side

	Motion sensing
	The data set

	Classification

	Evaluation
	Experiment 1: features and cross-validation
	Experiment design
	Results

	Experiment 2: training and testing on different players
	Experiment design
	Results

	Experiment 3: left foot kicking
	Experiment design
	Results

	Experiment 4: power consumption 
	Experiment design
	Results

	Summary of results

	Conclusion and future work
	Future work

	References

