
IN4073
Embedded Real-Time Systems

Report on stabilising a quadcopter

Delft University of Technology Group 8 Hajo Kleingeld (4247248)
September 15, 2020 Corniël Joosse (4249623)

Eric Camellini (4494164)

Abstract

Flying a quadcopter requires a highly skilled pilot. To make this task easier, a controller
system has to be developed including communication with a PC and filtering of sensor data.
The resulting demonstrator model of our team was not able to fly fully stabilised due to a not
properly working controller. Although, it has a stable communication link with the PC, logging
facilities, a working filter and all the safety requirements implemented.

1 Introduction

A quadcopter (QR) is an aerial vehicle with four
rotors. By increasing the speed of the rotors it
is possible to give the QR lift, and by setting
the rotors to different relative speeds, it is pos-
sible to steer. The problem with such vehicles is
that they are quite unstable, so that it requires
skills to be able to fly such a machine. Besides,
there are high frequency distortions which are
very hard to correct manually, so there is a need
for an embedded system which controls and sta-
bilises the movements of the QR.

The quadcopter used in this project is
equipped with a soft-core processor with corre-
sponding compiler, an acceleration sensor and a
gyroscope. The rest of the system has to be de-
veloped by the team, which includes:

• A PC program to send commands to the
QR;

• A lightweight protocol for communication
between PC and QR;

• A filter for the sensor data;
• A controller which stabilises the QR and

controls the engines;

2 Task division

The following table lists all the tasks for the
project. The implementation of the PC program
is done by one person, and therefore one task.

Documentation All

PC program Eric

QR program
Communication and protocol Corniël
Filters Hajo
Controllers Corniël
Scheduler Hajo
Calibration Eric
Engine mapping Hajo
Fixed point arithmetic Corniël
Test mode Corniël
Main state-machine Hajo
Logger (sensors) Hajo
Logger (status/telemetry) Eric

3 System design

3.1 Architecture

See appendix A for diagram and interfaces (page
9). The diagram is divided in three parts. A PC
part, a FPGA part, and the FPGA communi-
cates to the sensors and engines via an interface
board, which is the last part. The list of inter-
faces is quite extensive, because most modules
work tightly together and need therefore several
interfaces to set or get data and to run the main
task of the module.

3.2 Protocol

An important property of the protocol is that it
has to be very lightweight. To be able to have a
stable communication, a message should at least
contain the following three items:

1

• A message start identifier to determine the
start of a message

• Identification of the payload content and
length

• Some sort of error check

The protocol is designed in such a way that
for each of the three items we only need one byte.
The message start identifier is a start byte with
the value 0x4D (or ’M’). The payload content
and length is determined by the message type
byte, and as error check we use a checksum of
one byte. This results in three bytes overhead.

Only important messages, which are not sent
periodically, have to be acknowledged. This min-
imises the communication overhead, and for pe-
riodic messages the last message is the most im-
portant. So sending the next message is faster
than resending the previous one due to an ab-
sent acknowledgement. An acknowledgement is
only sent by the QR to the PC, and to do so, a
specific message type is defined. There are ten
message types, for each is given the name, total
payload size, whether it needs an acknowledge-
ment and a description.

1. Control message (5 byte): contains a new
value for yaw, pitch, roll and lift.

2. Mode change (1 byte, ack): contains mode
to which the QR should change.

3. Algorithm parameters (10 byte, ack): con-
tains the 5 controller algorithm parameters:
P (yaw), P1 and P2 (pitch/roll), C1 and C2
(pitch/roll kalman filter).

4. Debug message (30 byte): contains a debug
string to be displayed on the PC.

5. Telemetry data (26 byte): contains the real-
time data to be displayed on the PC.

6. Acknowledgement (1 byte): contains the
message type which receiving has to be ac-
knowledged to the PC.

7. Log start (0 byte, ack): requests the QR to
start logging.

8. Log request (0 byte, ack): requests the QR
to send the recorded log.

9. Sensor log line (28 byte): contains one log
entry of the sensor log.

10. Telemetry log line (14 byte): contains one
log entry of the status/telemetry log.

4 Implementation

4.1 PC program

The PC program acts as the pilot’s control in-
terface: its main feature are reading commands
from the keyboard and the joystick, sending
them to the QR and visualising the informa-
tion received periodically by the QR (telemetry
data). The core of the PC part of the system is
the main event loop, that performs the following
actions:

• It checks for an incoming byte from the QR
and calls the message handler if it is a mes-
sage start byte

• If a key was pressed it calls the keyboard
handler

• It checks whether the connection timed out
(2 seconds) by measuring the time elapsed
from the last received message

• It checks whether a certain time has passed
since the commands were sent, if so it reads
the joystick position and sends it to the QR

• It checks if there are unacknowledged mes-
sages in the queue and the acknowledge-
ment timeout has elapsed (100 ms) then it
re-sends these messages

• It refreshes the PC program status and the
QR telemetry information on the screen

4.1.1 Status

The status module contains all the relevant
status variables of the system (declared as
extern variables) that are accessible to the rest
of the program. The control parameters vari-
ables are also saved in a file when the program
terminates. Critical status variables such as
commands and control parameters are updated
only through specific methods that check for the
boundaries of the values, in order to avoid unex-
pected behaviour.

4.1.2 Communication

The communication-related modules (sender ,
communication , protocol , message_handler)
contain the functions to create, send and receive
messages accordingly to the protocol described
in Section 3.2. If a message needs to be ac-
knowledged (i.e. it is not periodic) then it is also
saved in a data structure that can contain only
one message per type (the most recently sent).
This structure is implemented in the ack_queue

2

module, that provides also the functions for ac-
knowledgement handling and queue resending.
The message handler is called when a start byte
is received, and it reads the further message
bytes in a blocking way (with a maximum time-
out). The telemetry data received by the QR
is then used to update the related status vari-
ables. The integer values in the payloads require
endianness handling because of the difference in
the format used on the two architectures (intel
architecture on PC and X32 architecture on the
QR). In the communication module every inte-
ger is converted from little-endian to big-endian
format during message sending, and vice versa
when message reception is handled.

4.1.3 Joystick and keyboard

The joystick_handler reads the joystick po-
sition, scales the values in a linear way (8-bits
integer for yaw, pitch, roll and 10-bits unsigned
for lift) and updates the related status variables.
The keyboard module handles the key presses,
used for commands trimming and for sending all
the non-periodic messages.

4.1.4 User interface

We realised the gui module using the ncurses li-
brary1. The right windows shows the status, the
left windows shows real-time logging information
with a color code: green, yellow and red for PC
logs, warnings and errors respectively and cyan
for QR debug messages.

4.1.5 Program start and completion

Before starting the event loop the program
checks if the joystick is in neutral position, up-
loads and runs the QR executable (through a
script execution) and loads the saved control pa-
rameters. When the program is closed then it
also terminates the program execution on the
QR by sending an exit message (implemented as
a mode change) and it saves the control parame-
ters. All these functions are implemented int the
boot module.

4.1.6 Logging

The logger module saves the log lines received
by the QR in csv formatted files after a log down-
load request is sent. It also logs the messages
that are shown on the console during the pro-
gram execution and the raw bytes received by

the QR as hex values. The latter is convenient
for debugging communication problems.

4.2 Fixed point arithmetic

To be able to do float calculations on a proces-
sor which does not support floating point cal-
culations (on the QR), a fixed point library is
required. We have implemented our own library,
this to have a library which perfectly suits our
needs. The fixed point library has implemen-
tations for addition, subtraction, multiplication,
division, raise to a power and conversion be-
tween multiple precisions. Most previously listed
mathematical operations have multiple imple-
mentations. One using a function which accepts
variables with type FixedPoint , and is flexible
but slower. The functions check if the precision
of both provided parameters are the same, and
when different, converts one of them. Further
there are also macro versions of the functions,
which assume that both parameters have the
same precision, but are a lot faster (and there-
fore end with _f*). There are also macro imple-
mentations that act directly on integers (in this
case the macro name ends with _fi*), accept
a non fixed-point constant as second parameter
(suffixed with _fc*) and more precise versions
(_f*p). The more precise macros take e.g. into
account that one of the parameters is very small
and therefore shift the value back after mathe-
matical operation instead of before.

4.3 Scheduler

The scheduler is the core of the QR program
and links all other QR modules together. It’s
designed with one specific goal in mind. En-
sure that the system executes tasks at a constant
phase. It shouldn’t matter if the scheduler is not
executing code for some time, as long as it en-
sures, that the filters and control loops are run
at a constant speed, and are called as fast as
possible when new data is available. This leads
to a very simple but stable scheduler shown in
Figure 1.

The scheduler has 3 phases witch keep on
repeating during the execution of the program.
The first state is the ”Wait for kick” state. This
means that the scheduler waits until the timer in-
terrupt, running at a set frequency, has received
the data needed for the execution of the tasks.

1https://www.gnu.org/software/ncurses/

3

At that moment the timer interrupt kicks the
scheduler and it will move to the next phase. The
next phase is the actual execution phase. This is
where all tasks from a task list are executed.

The final phase is the finishing phase. In this
phase the scheduler determines which task set
has to run next and it analyses the execution
time of the ran tasks. If the scheduler detects
that the program lags behind more than one it-
eration, the next loop will be skipped.

Figure 1: Overview of the scheduler

A different set of tasks is used to satisfy the
different modes available on the QR. A few ex-
amples of the different task sets are:

• Safe mode: filter, protocol, logger, finished
• Calibration: filter, calibration, finished
• panic mode: Panic, protocol, finished
• Full control: engine control, filter, protocol,

logger, finished

4.4 Communication and protocol

All code running on the QR has to be as optimal
as possible, therefore no structs where used,
because they made things around four times
slower.

The interrupt which is fired upon receiving
of a byte (uart.c : isr_rs232_rx()) puts the
received byte in a circular buffer (which has the
wrong name fifo). The function protocol.c :

_protocol_check_message() is called from the
scheduler which runs in the main loop, and
checks if:

• The first byte in the circular buffer is the
start byte (0x4D), otherwise this byte is dis-
carded

• If the message type is defined, i.e. the value
of this byte is one of the message types

• If the amount of bytes in the buffer is large
enough to contain a whole message for the
given message type

If so, the function protocol_parse_message()

parses the message. First the checksum is calcu-
lated on the bytes in the receive circular buffer,
and if this is right, a setter function of the cor-
responding module is called, with the payload
data as parameter(s).

There are a few options to send a new mes-
sage to the PC using the protocol, of which
only one is used. The other ones were only im-
plemented for testing purposes or use structs

which is slower. The mainly used method is
protocol.c : protocol_send_new_message() .
This function has three parameters: the message
type, the length of the message and a pointer to
the payload. It directly puts the start byte, mes-
sage type byte and payload in the send buffer. If
the payload length exceeds the defined message
payload size, the payload is trimmed. If the set
payload length is shorter than the defined mes-
sage payload size, additional zeros will be send to
fill the message. While the function puts all the
bytes in the send buffer it calculates the check-
sum over all sent bytes except the start byte.
At last, the checksum is also added to the send
buffer. The other functions which can be used
to send a message from protocol.c are:

• protocol_create_message() to create a
new message in a struct of type Message .

• protocol_send_message() to send a mes-
sage created with the previous listed
method.

• protocol_send_fixed_message() to send
a fixed message from the given parameters

To be able to control the amount of processor
time it takes to actually send the bytes over the
UART (universal asynchronous receiver/trans-
mitter), only bursts of 10 bytes (the value de-
fined in SND_SEQUENTLY_BYTES) are sent. The

4

start of the burst is triggered by the scheduler
which runs in the main loop by calling uart.c :
uart_start_snd() . uart.c : uart_putchar()

actually copies the bytes to the UART register,
and keeps track of the current bursts byte count
in snd_byte_cnt .

There are two debug modes in
which the protocol and uart modules
can work: DEBUG_MODE_PROTOCOL and
DEBUG_MODE_DIRECT . The first uses the pro-
tocol while the latter directly prints the debug
strings to the UART, and outputs any other
message as hex values. This allows one to see
whether and where communication goes wrong,
and we can see the output in a regular terminal
program like minicom when the PC program can
not interpret the data.

4.5 Filter

The main goal of the filters running on the QR
is to remove as much noise from the sensor val-
ues as possible. This has to be done while taking
several constraints into consideration:

• Real world time constraint
• Delay of data caused by the filter
• Limited 32 bit architecture

4.5.1 Filter design

The first part of designing a filter is deciding
upon what kind of filter to use. We followed
the suggestion given during the classes an went
for an IIR Butterworth filter. The decision of
what order to be implemented came from time
constraints. A second order Butterworth filter
takes roughly 200µs to execute on our system.
This would have lead to the total execution time
of 1200µs for all 6 filters. This would later turn
out to be too much execution time. A First order
Butterworth filter only takes 120µs (720µs total)
to execute and was therefore chosen as the final
order for the filter.

In order to decide the cutoff frequency sev-
eral calculations where done in Matlab. The first
step was identifying what kind of data we actu-
ally needed to filter. For this a log was made
while the QR was held in hand and engines ro-
tating at approximately floating speed in order
to replicate the noise of an actual flight as closely
as possible. An FFT of this log is shown in Fig-
ure 2. It shows that there are a lot of peaks in
the data at several frequency ranges:

• 0-10Hz: Main physical movements of the
QR

• 65Hz: Rotations of the engines
• 130Hz, 195Hz: Higher harmonic frequencies

of the engines

Of all this data only one the 0-10Hz section
is interesting. The first bit peak of noise lies
around 65Hz. This tells us that the filters cutoff
frequency should be between 10Hz and 60Hz. A
lower cutoff frequency leads to more noise reduc-
tion which is good. A higher cutoff frequency
leads to less phase shift in the lower frequen-
cies and is also good. For this reason a good
trade off needed to be found. Because we run
the whole system at 500Hz (the minimum fre-
quency) we value the phase-shift data more than
the reduction of noise. For this reason we Tested
11 different cutoff frequencies in matlab. These
are shown in figure 2 on the right. The 25Hz
filter (light blue) had a good reduction of noise
and less phase shifting than its lower frequency
counterparts and was therefore chosen as the fi-
nal cutoff frequency for the filter. This leads to
the following filter coefficients:

• a0 = 0.1367 = 0x00000230 (12 bit precision)
• a1 = 0.1367 = 0x00000230 (12 bit precision)
• b1 = -0.7266 = 0xfffff460 (12 bit precision)

4.5.2 Fixed point implementation

The designed filter was implemented on the QR
with twelve bits of precision. This is an amount
that is not optimised for our filter at and could
have been implemented in a better way. The fil-
ter also uses some unnecessary operations. All of
these optimisation where not made due to time
constraints.

The filter could have been implemented with
8 bit precision instead of the 12 bit used. The
coefficients do not use the last 4 bits (they are
0) and are therefore useless. The code currently
also runs with a lot of unnecessary fixed point
math. before the sensor value is used for cal-
culation, it’s converted to a fixed point number.
then, after the multiplication has been completed
this byte shift needs to be reverted with another
fixed point conversion. All of the code code could
have been reduced the following code block, but
this was not done due to implementation prob-
lems and lack of time:

5

Figure 2: FFT of the data log before and after filtering with different filters

1 x0 = sensors - sensor_offset;
2 filterOutput = x0 * A0 + x1 * A1
3 -y1 * B1;
4 x1 = x0;

4.6 Calibration

The calibration module is called through the
RunCalibration method takes the average of
the last 100 filters samples for every sensor, and
stores them in the sensor_offsets array. This
array can then be accessed when current cali-
brated filter values are required, e.g. from the
filter module. The is_calibrated() check
is used by the statemachine to check if the cal-
ibration was performed.

4.7 Controller

On the QR three separate controllers are imple-
mented. One for yaw, pitch and roll. The yaw
controller is a rate controller and the identical
pitch and roll controllers are attitude or angle
controllers.

The controllers are called from the scheduler
which runs in the main loop. Only when the QR
runs in yaw control mode the corresponding yaw
controller is called, and whilst running full con-
trol mode all controllers are involved. The con-
trollers use the latest output data of the filters
or sensors, and the controller algorithm parame-
ters which are set from the PC program. Using a
constant (DATA_SRC) it is possible to choose be-
tween using direct sensor output (SENSOR_DATA)
and using filtered data (FILTER_DATA).

4.7.1 Yaw controller

The yaw controller is a simple P-controller which
controls the rate. The main formula for the con-
troller is yawc = P · (yaws − Sgyro), where yawc

is the corrected yaw value, yaws is the yaw set-
point set using the joystick on the PC and Sgyro
the (filtered) output of the corresponding gyro
sensor. The controller is implemented using fixed
point arithmetic and uses the same precision as
the filter to be able to use the filter output di-
rectly without converting it to another precision.
The value is converted back to a normal inte-
ger before passed to the engine mapping module.
The engine mapper does only use addition and
subtraction and has therefore no need for fixed
point numbers.

4.7.2 Pitch and roll controller

The pitch and roll controllers are identical. In
the source code they do however not share the
same code, this is to make the execution faster.
The controller needs three persistent variables
and of course there are methods to implement
this with e.g. structs, so that there is only
one function with the controller code. The code
which selects the right variables will slow down
the execution of the controller so we have cho-
sen to use two separate functions with their own
static variables and with the same code.

Listing 1 shows the implementation in pseudo
code of the pitch controller. All variables are
fixed point numbers, but to keep this listing sim-
ple, all fixed point specific functions are removed.
First the gyroscope sensor value is multiplied
with a scalar to normalise the value, than the
bias is subtracted. Line 3 and 4 calculate the
new value for phi, and line 5 the new bias value.
The last line calculates the corrected pitch value
which is passed to the engine controller, where
pitch is the set-point set by the PC program.

6

1 rate = FILTER_VALUE(SENS_GYRO_PITCH)
2 * PID_GYRO_SCALAR - p_bias;
3 phi = phi + rate * P2PHI;
4 phi = phi - ((phi - acc_pitch) / C1);
5 p_bias = p_bias +
6 ((phi - acc_pitch) / C2);
7 new_pitch = P1 * (pitch - phi) -
8 P2 * pitch_r;

Listing 1: Pitch controller pseudo-code

4.8 Code metrics

The total compiled size of our QR program is
123kB with test mode disabled. With test mode
enabled, another 13kB is used for the test data.
The C code itself is 97.5kB. The number of lines
of code (.c and .h files) is 3587. The size of the
PC program executable is 61,5kB and the PC C
code is 49,1 kB. The amount of lines of code is
2044.

5 Experimental results

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

200

300

400

500

600

Setpoints

Sensor gyro

Sensor acc

Engine 1

Engine 2

Engine 3

Engine 4

Calculated yaw/pitch/roll

yaw/pitch/roll filter output

Figure 3: Output of a test run

5.1 Loop frequency

In order to measure the performance of the sys-
tem, several timers where added to the code of
the scheduler module. They measure the time
the code spends in each component. A overview
of these times can be seen in table 2. With these
times it was possible to estimate how fast several
schedules could run. The longest schedule avail-
able (Full Control with logging) takes approxi-
mately 1400µs. The program was set to run at
500Hz (2000µs per iteration). This means that
the program is able to run the full control sched-
ule without any problems or missing of dead-
lines. This was also seen as the ”deadlines missed
counter” remained at a steady number after start

up.
These results suggest that it’s possible to

raise the frequency of the scheduler. Especially
as the QR is normally not logging any data (re-
ducing the average loop time to approximately
1200µs). It was attempted to raise the loop fre-
quency to 750Hz (1000 000 / 750 = 1333.3µs per
loop) as this should be feasible. Experimental
evaluation showed different results. The average
loop time was as expected around 1200µs and
yet was the ”deadlines missed counter” increas-
ing rapidly. This was caused by the communi-
cation between the QR and the PC. When the
processor receives or sends a message, it results
in a big spike in the processor load. This spike
causes the program to miss several deadlines in
a row.

It might be possible to increase the loop fre-
quency if more time was available for the project
team. Then several tasks could have been opti-
mised in order to create a faster system. For the
final implementation the ideal loop frequency re-
mained 500Hz, as at this values, there where very
little deadline misses.

Task Average execution time

Filters 674µs

Full Control 455µs

Yaw Control 265µs

Manual Control 208µs

Logger 210µs

Protocol 80µs

Table 2: Average latency of the program while
executing several code blocks

5.2 Test mode

To be able to test the controllers and the filter
at home on the development board, we imple-
mented a test mode. When test mode is enabled
(by defining the constant TEST_MODE) and test
data is set in pidtester.c it is possible to auto-
matically run a test. Hereby the set point data
(test_setpoint_data) is used to set a certain
set point for yaw, pitch or roll. Also the sen-
sor data is set to the global sensors array us-
ing the filter test data (test_filter_data) from
pidtester.c . The sensors array is normally
set in the engines.c file, and uses the interface
pidtest_get_sensor() to obtain the test data.
See Figure 3 (page 7) for the output of a test

7

Test performed Result

The QR has a safe state where the engines won’t turn Passed

The safe state can be reached at all times Passed

The QR cant leave the safe state when controls are not zero Passed

The program wont start if the Joystick is not in neutral position Passed

The system is able to make a emergency stop at all times Passed

The system can reach the emergency stop via the ’1’ key Passed

The system can reach the emergency stop via the joystick trigger Not passed

The engines are not allowed to stall during operation Passed

Sensor data must be filter with a digital filter Passed

The communication between the QR and PC must be reliable Passed

Losing communication results in an emergency stop Passed

Table 1: Safety checks performed during the final demonstration.

run. The top lines are the engine values, the
block wave are the pitch set-points. The acceler-
ation and gyroscope sensors are the other two
lines which have, on purpose, some sinusoidal
noise.

5.3 Safety Tests

In order to see if the system was safe enough to
take flight with as little risks as possible a lot of
tests where fulfilled. These tests shown that our
system fulfilled the safety requirements can be
seen in table 1. A quick look shows that only one
requirement was not fulfilled. This was caused
by a misinterpretation of the requirements.

5.4 Demonstrator capabilities

Al safety requirements are implemented as listed
in Table 1. Further manual mode works fine,
the logger works for both sensor data and sta-
tus/telemetry data. The communication link is
stable, which means that only very occasionally
we get a checksum error and a discarded mes-
sage. The scheduler which schedules all tasks at
500Hz is also working good, which means that
we do not have a lot of deadline misses. The
filter is also working fine.

Only the controllers did not work as ex-
pected. As pointed out by the teaching assis-
tants during the final test, was the feedback of
the controller working in the opposite direction.
This means that every movement is strengthened
instead of counteracted. When we look more
closely to the result of the test mode output, we
can indeed see that the controller makes the en-

gine values even higher if the sensor value raises
above the set-point. This should not be the case.

6 Conclusion

The final design is divided in clear modules.
Only while developing we did not create each
module on it’s own and test is separately from
the other code. Most modules where tested in
combination with each other. This results in a
system where the interfaces of the modules are
less defined. On the other hand do all the mod-
ules have a clearly defined task. The protocol is
lightweight as it should. The system base can be
said to be done and super stable.

The only part of the project that is not done
yet is full control, but we we are almost there.
The result as a team is therefore pretty good.
Everybody has invested around the same amount
of time in the project. Initial c programming
skills differed a bit and so might the resulting
amount of code.

Such a project is a good way to learn devel-
oping software for embedded systems with low
resources. Also collaborating on a shared code
base gives insight in e.g. integration problems.
The hardest part of the project was the limited
availability of the QRs itself. No time could be
wasted on testing and debugging code during the
time the QR was available to the team. This
has lead to the invention of many creative ways
of testing code without the hardware itself. In
hindsight we can say that this was a fun project
to work on even though it was super tough and
a lot of work.

8

Appendix A - Software architecture and modules

Figure 4: Software architecture

PC program

Module Interfaces

ack queue void insert into ack queue(Message *m); void insert into ack queue(Message *m);
Message *acknowledge(); void resend ack queue(); int is ack queue empty(); void
print ack queue();

boot void init program(); void end program(bool conn lost);

communication void term initio(); void term exitio(); void open fpga(); void close fpga(); int
fpga getchar nb(unsigned char *c); int fpga getchar(); void send message(Message *m,
int ack enqueue); Message *receive message(); void start fpga program();

gui void gui init(); void gui exit(); int kbhit(); void print status(); void print scroll(char
*fmt, int color pair id, ...);

joystick handler void joystick init(); void handle joystick(); void close joystick();

keyboard void handle keyboard input(int ch);

9

logger void init logger(); void log sensors line(PayloadLogSensors *p); void
log telemetry line(PayloadLogTelemetry *p); void log console line(char *str); void
log incoming byte(unsigned char c); void loghex newl(); void exit logger();

message handler void handle message(Message *m);

protocol void dump msg(Message *m); Message *new message(uint8 t type, void
*payload); unsigned char calculate checksum(Message *m); PayloadControl
*new payload control(uint16 t lift, int8 t roll, int8 t pitch, int8 t yaw); Payload-
Mode *new payload mode(uint8 t mode); PayloadParam *new payload param(uint16 t
p, uint16 t p1, uint16 t p2, uint16 t c1, uint16 t c2);

sender void send params(); void change mode(uint8 t md); void send commands(); void
start logging(); void log request();

status ad status(); void save status(); int8 t trim up(int8 t trim); int8 t trim down(int8 t
trim); void lift trim up(); void lift trim down(); uint16 t param up(uint16 t par);
uint16 t param down(uint16 t par);

timer void start timer(struct timeval *t); double timer value ms(struct timeval *t); double
timer value us(struct timeval *t); void update response time(struct timeval *s);

Table 3: PC program: modules and interfaces.

QR program

Module Interfaces

EngineControl short getCurrRoll(void); short getCurrPitch(void); short getCurrYaw(void);

LazyTimer void initTimer(LazyTimer * timer); void ResetTimer(LazyTimer * timer); int
TimePassed(LazyTimer * timer); int runTimer(LazyTimer * timer, int waitTime); int
TimePassed us(LazyTimer * timer); int runTimer us(LazyTimer * timer, int waitTime);

SensorLogger void RunSensorLogger(void); bool SensorLoggerRun(void); LoggerStatus SensorLogger-
Status(void); void SensorLoggerStart(void); LoggerStatus SensorLoggerSendLog(void);
void printlogsendstatus(void);

status logger nputs(uint16 t l, int8 t r, int8 t p, int8 t y); LoggerStatus status logger state(); void
status logger start(); void log status line(); void print status log send progress(); Log-
gerStatus status logger send log()

calibration void RunCalibration(void); void print offsets(void); bool is calibrated(void);

debug void debug printf(const char*, ...);

engines bool RunPanic(void); void updateEngineValues(void); void Engines init(void); void
SetEngineValues (unsigned short e1, unsigned short e2, unsigned short e3, unsigned short
e4); void EnginePANIC(void); bool EnginesOff(void); void printEngineValues(void);
unsigned short getEngine1(void); unsigned short getEngine2(void); unsigned short
getEngine3(void); unsigned short getEngine4(void);

exceptions void exceptions test(void); void exceptions init(void);

filter void filter init(void); bool runButterworth 2 10(int SensorNr); void RunFilters(void);
void runFiltersFull(void); void skipSampleFilter(void); int getFilterLack(void);

fixedpoint void fp conv(FixedPoint* A, int precision); void fp print(FixedPoint *A, char *str);
/*Fixed point arithmetic macros*/

Scheduler void setSchedule(Tasks * newSchedule); void resetTimingStatistics(void); void startPro-
gram(void);

pidcontroller void pid set params(int, int, int, int, int); void pid yaw control(void); void
pid full control(void);

pidtester int pidtest get sensor(int); void pidtest set next setpoint(); void pidtest send log();

protocol void RunProtocol(void); bool protocol check message(void); bool proto-
col parse message(void); void protocol send fixed message(byte, int, ...); Message*
protocol create message(byte, int, void*); void protocol send message(Message*,
int); void protocol send new message(byte, int, void*); void protocol ack(char); bool
protocol buffer empty(void); int protocol message size(int);

statemachine ProgramState getMainState(void); void PANIC(void); void RunStateMachine(void);
void setState(uint8 t);

uart void uart init(void); int uart outbuffer space(void); int uart buffer size(void); int
uart outbuffer size(void); bool uart delete byte(int); void uart print(void); void
uart print outbuffer(void); int uart checksum(int, int); void uart send byte(byte); void
uart putchar(void); void uart start snd(void);

Table 4: QR program: modules and interfaces.

10

	Introduction
	Task division
	System design
	Architecture
	Protocol

	Implementation
	PC program
	Status
	Communication
	Joystick and keyboard
	User interface
	Program start and completion
	Logging

	Fixed point arithmetic
	Scheduler
	Communication and protocol
	Filter
	Filter design
	Fixed point implementation

	Calibration
	Controller
	Yaw controller
	Pitch and roll controller

	Code metrics

	Experimental results
	Loop frequency
	Test mode
	Safety Tests
	Demonstrator capabilities

	Conclusion

