IN4191 Security and Cryptography
Assignment 3

Eric Camellini
4494164
e.camellini@student.tudelft.nl

9 October 2015

Abstract

In this report I explain the chinese remainder theorem (CRT) and how it can be used to optimize RSA
decryption. I also show an example program that performs AES encryption and AES secret key exchange
using RSA. To conclude, I analyze the RSA decryption time measured in the program, comparing the
optimized (with the CRT) and the standard methods. I personally wrote the RSA implementation used
in this example.

1 Introduction

1.1 Chinese remainder theorem statement

Given a sequence nq - - - ny of positive integers, if they are pairwise coprime then, for any given sequence of
integers a; - - - ag, there exists an integer x solving the following system of simultaneous congruences:

x=a; (mod ny)
x=ar (mod nyg)

Furthermore:

r=y (modn;), 1<i<k — z=y (mod N), N=nj - ng.

[5](3]

1.2 CRT example

In this section I provide a numerical example of the CRT. The problem to solve is the following:

z=2 (mod 3)
x=2 (mod 4)
z=1 (mod5)
3,4,5 are pairwise coprime because ged(3,4) =1, gcd(3,5) =1, ged(4,5) =1, so we can apply the CRT.

The theorem says that a solution exists and that it is in (mod 3-4-5) = (mod 60). In this case the solution
is 26 (mod 60) (it means that there are many solutions to the system, of the form 26+%-60, k=10,1,2---)

1.3 CRT for RSA optimization

The idea behind the optimization is to split the RSA decryption modular exponentiation into two smaller
ones, each one used for one half of the message[4]. This can be done only knowing the factorization n = pq,
so only who has the private key can use this approach. The procedure is the following (see also [6]):

1. Compute:
dp =d (mod p—1)
dg =d (mod ¢ — 1)

1

Ginv = ¢q (mOd p)

2. Compute a CRT representation of the received ciphertext ¢ (this can be done because p and g are
coprime):
my = ¢ (mod p)

my = ¢?@ (mod)
3. Use the following formula to build the message:
h = giny(m1 — ms2) (mod p)

m=ms+h-q

2 Methods

To test the optimization described in Section 1.3 in I built an example program that simulates a simple secret
sharing scenario using AES (symmetric cipher) with key distribution through RSA (asymmetric cipher):

1. Bob generates an RSA key pair;
2. Alice sends and AES-128 encrypted message to Bob;

3. Alice, in order to allow Bob to decrypt the messages that she sends, encrypts the AES secret key with
RSA using Bob’s public key, and sends it to him.

4. Bob receives the encrypted secret key, he decrypts it with its private key and he can then use it to
decrypt the message sent by Alice.

I personally wrote the RSA implementation used in this program and I used a library ([2]) for prime and
random numbers generation, modular arithmetic and for the AES implementation (see the appendices for
details).

The program performs the RSA decryption both with and without the CRT optimization, and measures all
the encryption and decryption execution times. In order to analyze the performance of the two decryption
procedures I made some tests with different bit sizes for n and different payloads. I also made a program
that runs the described example for a selected amount of times and calculates the average of the various
execution times.

3 Results

An example of program execution with a 1024-bits n generated in the RSA algorithm is shown in Figure 1, it
includes also the execution times. The average execution times over 1000 iterations, again with a 1024-bits
n, are shown in Figure 2.

See the appendices for the source code and for some implementation details.

|_BOB__

BOB generates an RSA key pair:

TIMING: RSA key pair generation: 36.988974 ms

Bob's public key:
(139909029570260277493920294367516720587093318497072175111454493980956276697647056477522
162866797960797908069464776583071247226492973635328269006973144429051038352918946030291265

___ALICE__

Alice's message (input): Alice's input message

TIMING: AES-128 encryption: ©.093937 ms

AES-128 ciphertext: B4ylLgXbi7oelx9vSUVI3wEzzrQydFXqe+jD18gflsrKKrXg37Xx5kcI9pBl/Gohid
TIMING: RSA encryption: 72.728157 ms

Encrypted AES key:
MDI3MDYS5MIA4MIYXNIMXNTUZMJUONTYSMTY4NzZYyNDI3MDUAMJMZMJcONTI3MzAZNDMYNZA4MIELODC3MzCcy0DCz

BOB
TIMING: RSA decription (no crt): 85.749149 ms
TIMING: RSA decryption (crt): 83.138943 ms
TIMING: AES decryption: ©.037909 ms
Received plaintext: Alice's input message

Figure 1: Example of program execution. The RSA public key and the AES encrypted key have been cut
to make the image more readable, execute the code in the appendices to see a complete output.

AVG times over 1000 executions:

KEY generation time: 30.538122 ms
AES encryption time: 0.082491 ms
RSA encryption time: 73.450027 ms
RSA decryption time: 89.382718 ms
RSA + CRT dec. time: 85.549324 ms
AES decryption time: 0.0353082 mﬂ

Figure 2: Average execution times over 1000 executions

4 Discussion

Accordingly to the time measurements that I performed, the CRT decryption method always behaves more
efficiently: on average it reduces the execution time of the 6% (see Figure 2).

From a general analysis of this Python’s RSA implementation we can see that the operations that involve
modular exponentiation are efficient (the Python built-in pow function points to underlying C libraries as
stated in [1]). In a first version of the program I tried to implement RSA from scratch, including the
generation of the prime numbers and the modular arithmetic functions, but using the pow Python function
for exponentiation (like I do in the described final version). The bottleneck of this first attempt was the RSA
key pair generation: even with an efficient implementation of the Sieve of Erastothenes, used to generate the
two prime numbers, the operation used to take seconds with a bit size (of n, the modulo) greater than 18,
more than 1 minute with a bit size of 26, and my computer was not able to handle greater bit sizes. In the
end I decided to use a library also for the numbers generation part and for some modular operations (e.g.
inverse).

5 Conclusion

In this work I successfully implemented an efficient RSA module in python: it also includes the support for
an optimized decryption that uses the CRT. I built an example program that perform AES encryption and

AES secret key exchange using RSA, comparing the execution times of two RSA decryption techniques: the
standard and the CRT one. The results show that the CRT version is, on average, 6% more time efficient
than the classic method.

References

[1] Modular exponentiation in python. http://aditya.vaidya.info/blog/2014/06/27/
modular-exponentiation-python/. Accessed: September 15, 2020.

[2] Pycrypto - the python cryptography toolkit. https://www.dlitz.net/software/pycrypto/. Accessed:
September 15, 2020.

[3] Randell heyman - the chinese remainder theorem made easy. https://www.youtube.com/watch?v=
ru7mWZJ1RQg. Accessed: September 15, 2020.

[4] Using the crt with rsa. http://www.di-mgt.com.au/crt_rsa.html. Accessed: September 15, 2020.

[6] Wikipedia - chinese remainder algorithm. https://en.wikipedia.org/wiki/Chinese_remainder_
theorem, note = Accessed: September 15, 2020.

[6] Wikipedia - rsa - using the chinese remainder algorithm. https://en.wikipedia.org/wiki/RSA_
(cryptosystem)#Using_the_Chinese_remainder_algorithm. Accessed: September 15, 2020.

Appendices

The appendices contain the source code (Python 2.7) of all the modules that I built in this work. The link
to references used are inserted in the code as comments.

A aes.py

In this module I implemented the AES chiper building an AESCipher class. It is based on the PyCrypto
library and it used the CBC (cipher block chaining) AES mode. This implementation is based on the two that
I linked in the source code. The encryption outputs a base64 encoding of the ciphertext and the decryption
requires an input text with the same encoding to work.

import base64
from Crypto.Cipher import AES
from Crypto import Random

#stackoverflow.com/questions /12524994 /encrypt -decrypt -using-pycrypto-aes-256
#stackoverflow.com/questions/12562021/aes-decryption-padding-with-pkcs5-python
BS = AES.block_size

_pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)

_unpad = lambda s: s[:-ord(s[len(s)-1:1)]

class AESCipher:
def init__(self, key):

self .key = key

def encrypt(self, raw):

raw = _pad(raw)

iv = Random.new().read(BS)

cipher = AES.new(self.key, AES.MODE_CBC, iv)
return base64.b64encode(iv + cipher.encrypt(raw))

def decrypt(self, enc):
enc = base64.b64decode (enc)
iv = enc[:16]
cipher = AES.new(self.key, AES.MODE_CBC, iv)
return _unpad(cipher.decrypt (enc[16:]))

B rsa.py

In this module I implemented the RSA chiper building an RSACipher class. An instance of the class can be
used in for:

1. Encryption with the public key (e, n): in this case the public key used for the encryption must be set
using the set_public_key method, then the encrypt method can be used.

2. Key pair generation and decryption using the private key: in this case a key pair must be generated
using the gen_key_pair method, then the decrypt method can be used. The corresponding public key
can be obtained (to be distributed) using the get_public_key method.

The module provides also methods for string encryption and decryption: these methods act on the input
string character by character and the result of the encryption is a base64 encoded string (same format
expected for the decryption). It is not the more efficient way to encrypt/decrypt a string, but for the
purpose of comparing the efficiency of two decryption methods it is acceptable.

import base64
from Crypto.Util import number
class RSACipher:

def init__(self):

self.e = None
self.d = None
self.n = None
None

def set_public_key(self, (e, n)):
self.e = e
self.n = n
self.block_size = len(str(n))

def _gen_primes(self, bit_length):
self.p = number.getStrongPrime(bit_length)
self.q = number.getStrongPrime(bit_length)

def gen_key_pair(self, bit_length):
if(bit_length % 2 != 0):
raise ValueError ("Bit length must be a multiple of 2")

if (bit_length < 8):
raise ValueError("Bit length must be at least 8 bits")

def

def

def

#crypto

bits_pq = bit_length/2

self.n = 0

while (self.n.bit_length() != bit_length):
self. _gen_primes(bits_pq)
self .n = self.p*self.q

self .phi_n = (self.p-1)*(self.q-1)

self.e = 0
while((self.e <= 3) |
(self.e >= self.phi_n) |
(number .GCD(self.e, self.phi_n) != 1)):
self.e = number.getRandomInteger (self.phi_n.bit_length())

self.d = number.inverse(self.e, self.phi_n)
self.block_size = len(str(self.n))

#Initializing the CRT values
self._init_crt ()

_init_crt(self):

self.dp = self.d % (self.p - 1)

self.dq self.d % (self.q - 1)

self.q_inv = number.inverse(self.q, self.p)

get_public_key (self):
if (self.e is None) | (self.n is None):

raise UnboundLocalError ("Key pair not generated.")
return (self.e, self.n)

encrypt (self, m):
if (self.e is Nome) | (self.n is Nomne):

raise UnboundLocalError ("Encryption public key not set.")
return pow(m, self.e, self.n)

.stackexchange.com/questions/2575/chinese-remainder -theorem-and-rsa

#en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm

def

def

def

decrypt (self, c, crt=False):
if (self.d is None) | (self.n is None):
raise UnboundLocalError ("Key pair not generated.")
if crt is True:
ml = pow(c, self.dp, self.p)
m2 = pow(c, self.dq, self.q)
h = (self.q_inv * (ml - m2)) % self.p
return m2 + hx*self.q
else:
return pow(c, self.d, self.n)

encrypt_string(self, s):

ciphertext = ""

for ¢ in s:
e_c = str(self.encrypt(ord(c)))
while len(e_c) < self.block_size:

e_c = 0’ + e_c

ciphertext += e_c

return base64.b64encode(ciphertext)

decrypt_string(self, s, crt=False):

s = base64.b64decode(s)
plaintext = ""
block = ""
for ¢ in s:
if (len(block) < self.block_size):
block += c
else:
plaintext += chr(self.decrypt(int(block)))
block = c
plaintext += chr(self.decrypt(int(block), crt))
return plaintext

C example.py

This is the example program described in Section 2. To measure the execution times in an easy way I used
the Python contextmanager module.

#!/usr/bin/python2.7

import sys

import aes

import rsa

import time

from contextlib import contextmanager

@contextmanager
def measure_time(label):
tl = time.time ()
yield
t2 = time.time ()
print ’TIMING: %s: %0.6f ms’ % (label, (t2-t1)%*1000)

if __name__ == "__main__":
if (len(sys.argv) != 2):
print "Input missing. Program terminated."
print "Usage: ./example.py ’input message’"

sys.exit (0)
else:

BOB

print "___BOB___"

Bob generates its RSA key pair"

print "BOB generates an RSA key pair:"

rsa_bob = rsa.RSACipher ()

with measure_time (’RSA key pair generation’):
rsa_bob.gen_key_pair (16)

public_key_bob = rsa_bob.get_public_key ()

print "Bob’s public key: ", public_key_bob

print

ALICE

print " ___ALICE___"

ALICE has an AES secret key, she encrypts it with Bob’s public
key and she sends it to Bob. She sends also and AES encrypted

message

AES-128 initialization, Alice has the key
key = "HardcodedKey?lol" # 128-bits key
aes128 = aes.AESCipher (key)

input = sys.argv[1] # reading and printing the message
print "Alice’s message (input): ", input

Step 1 - AES-128 encryption

with measure_time (’AES-128 encryption’):
ciphertext = aes128.encrypt(input)

print "AES-128 ciphertext: ", ciphertext

Step 2 - RSA Key encryption
rsa_alice = rsa.RSACipher ()
rsa_alice.set_public_key(public_key_bob)
with measure_time (’RSA encryption’):

e_key = rsa_alice.encrypt_string(key)
print "Encrypted AES key: ", e_key
print

BOB

print "___BOB___"

BOB receives the encrypted AES key, he decrypts it using
its private RSA key and then he uses it to decrypt the

secret message

Step 3.1 - Bob receives and decrypt the secret key
with measure_time (’RSA decription (no crt)’):

key = rsa_bob.decrypt_string(e_key)
#print "Key: ", key

step 3.2 - The same as 3.1, but with CRT optimization
with measure_time (’RSA decryption (crt)’):

key = rsa_bob.decrypt_string(e_key, True)
#print "Key (CRT): ", key

Step 4 - AES-128 decryption

with measure_time (’AES decryption’):
plaintext = aesl128.decrypt(ciphertext)

print "Received plaintext: ", plaintext

D time_avg.py

This is the program that computes the execution time average over a fixed number of executions (1000 in
this case), as described in Section 2.

#!/usr/bin/python2.7

import sys

import aes

import rsa

import time

from contextlib import contextmanager

ITERATIONS = 1000

@contextmanager

def measure_time(times_list):
tl = time.time ()
yield
t2 = time.time ()
times_list.append((t2-t1)*1000)

def list_avg(l):
return sum(l)/len(1l)

if __name__ == "_ _main__":
if (len(sys.argv) != 2):
print "Input missing. Program terminated."
print "Usage: ./time_avg.py ’input message’"

sys.exit (0)
else:
key_times = []

aes_enc_times = []
rsa_enc_times = []
rsa_crt_dec_times = []
rsa_dec_times = []
aes_dec_times = []

for i in range (ITERATIONS):

print "Execution %d..." % i

rsa_bob = rsa.RSACipher ()

with measure_time (key_times):
rsa_bob.gen_key_pair (16)

public_key_bob = rsa_bob.get_public_key ()

key = "HardcodedKey?7lol" # 128-bits key

aes128 = aes.AESCipher (key)

input = sys.argv[1] # reading and printing the message
with measure_time (aes_enc_times):
ciphertext = aesl128.encrypt (input)

rsa_alice = rsa.RSACipher ()
rsa_alice.set_public_key(public_key_bob)
with measure_time(rsa_enc_times):

e_key = rsa_alice.encrypt_string(key)

with measure_time(rsa_dec_times):
key = rsa_bob.decrypt_string(e_key)

with measure_time(rsa_crt_dec_times):
key = rsa_bob.decrypt_string(e_key, True)

with measure_time (aes_dec_times):
plaintext = aesl128.decrypt(ciphertext)

print "Final plaintext: ", plaintext

print "AVG times over %d executions:" J ITERATIONS

print "KEY generation time: %0.6f ms" % list_avg(key_times)

print "AES encryption time: %0.6f ms" J list_avg(aes_enc_times)
print "RSA encryption time: %0.6f ms" Y list_avg(rsa_enc_times)
print "RSA decryption time: J%0.6f ms" Y list_avg(rsa_dec_times)
print "RSA + CRT dec. time: %0.6f ms" % list_avg(rsa_crt_dec_times)
print "AES decryption time: %0.6f ms" Y list_avg(aes_dec_times)

