
IN4191 Security and Cryptography

Assignment 2

Eric Camellini
4494164

e.camellini@student.tudelft.nl

9 October 2015

Abstract

In this report I analyse the identity-based RSA multisignature scheme proposed by L. Harn and J.
Ren in [2]. I also provide an example of application of the algorithm.

1 Introduction

1.1 Multisignatures

A digital multisignature is a digital signature created by multiple people using multiple keys. Every person
involved in the process has a personal key pair and uses the private key to build his/her part of the signature.
The generated signature can then be verified using all the public keys of the signers. An important feature
of multisignatures is that the signing group is not fixed, can be dynamically composed by any set of people.
A good digital multisignature should satisfy two properties:

• Fixed length: the length of the signature is always the same, it doesn’t depend from the number of
signers;

• Constant verification time: the number of modulo exponentiations required to verify the multisignature
is the same as the one required to verify a single signature.

In this report I analyse the multisignature scheme described in [2]: it was the first one to satisfy both the
properties. This approach is based on the Shamir’s IBS (identity-based signature) scheme, a digital RSA-
based signature scheme where the identity of the signer is the public key. In an identity-based cryptosystem
there is no need for a PKI (public key infrastructure), but in order to be implemented it requires a PKG
(private key generator) system that generates private keys based on the identity of the signers. The identity
must be a unique identifier of the person in the environment in which the system is used (e.g. the e-mail in
a firm).

The system described in this report doesn’t take into account the confidentiality of the message, it addresses
only its authenticity and integrity.

2 Algorithm

2.1 PKG keys generation

The PKG needs its own key pair. It generates it through the execution of the basic RSA steps:

1



1. It Chooses two random large primes p and q;

2. Computes and stores n = p · q and φ(n) = (p− 1) · (q − 1);

3. Chooses a random public key e such that e ∈ Z∗
φ(n) (so such that gcd(e, φ(n)) = 1);

4. Computes the private key d = e−1modφ(n).

2.2 Signer’s key pair

A prerequisite for the application of the described scheme is that every signer has a key pair. This pair is
such that:

1. The public key is ij , the identity of the signer j;

2. The private key is gj , computed by the PKG as gj = idj modn.

2.3 Multisignature generation

In a scenario with l signers that want to sign a message m, every signer j executes the following steps:

1. Chooses a random integer rj ;

2. Computes tj = rej modn;

3. Broadcasts tj to every other signer;

4. Computes t = (
∏l
j=1 tj)modn (Note that the formula used to compute t is different from the one used

in the paper (t = (
∏l
j=1 rj)modn), but doing it in the way I showed makes the formal verification

performed at the end of this section work correctly, even though the numeric example worked in both
cases.);

5. Computes sj = gjr
H(t,m)
j modn where H(t,m) is the hash of the message together with t, performed

through a two-parameters hash function (which function to use is out of the scope of the paper, it
can be chosen during the implementation of the scheme). In this way it is possible to compute the
signature in an independent way from the message size, and the message integrity is guaranteed;

6. Broadcasts sj to every other signer;

7. Computes s =
∏l
j=1(sjmodn);

8. Obtains the final multisignature σ = (t, s) that can be sent together with the message;

2.4 Multisignature verification

The receiver receives the message m (not encrypted, confidentiality is out of the scope of the paper) and the
signature σ, and can use the identity of the signers (i.e. their public keys) and the public key of the PKG to
verify the following:

se = (

l∏
j=1

ij) t
H(t,m)modn

If it holds, the multisignature is valid and the message integrity is guaranteed. This works because:

se = (s1 · · · sl)e = (g1r
H(t,m)
1 · · · glrH(t,m)

l )e = (g1 · · · gl)e · (re1 · · · rel )H(t,m) = (id1 · · · idl )e · (t1 · · · tl)H(t,m)

= (id1 · · · idl )d
−1

· tH(t,m) = (i1 · · · il) · tH(t,m)modn

2



3 Example

In this section I will provide a numerical example with relatively small values. Refer to Section 2 for the
description of the various steps. To compute the big exponentiations in modular arithmetic I used the on-line
tool linked in [1].

3.1 PKG keys generation

PKG selects p and q, computes n and φ(n). It then selects the public key e and computes the private key d:

p = 7 q = 11

n = p · q = 77 φ(n) = (p− 1) · (q − 1) = 60

e = 17 ∈ Z∗
60 d = e−1mod 60 = 53

3.2 Multisignature generation

Now I show an example of a multisignature generation procedure with three signers. The corresponding
identities ij (public keys) are selected as three small values, then the PKG computes their private keys gj
using its own one. The signers then compute the multisignature values t and s using their random number
rj (selected as a small values). To do example calculations I just set the hash value H(t,m) = 15, where m
is the message to be signed (the hash function to use is an implementation choice and it has no restrictions,
so this situation is possible).

i1 = 3 i2 = 4 i3 = 5

gj = idj modn → g1 = 353mod 77 = 5 g2 = 453mod 77 = 9 g3 = 553mod 77 = 59

r1 = 6 r2 = 7 r3 = 8

tj = rej modn → t1 = 617mod 77 = 41 t2 = 717mod 77 = 28 t3 = 817mod 77 = 57

t =

l∏
j=1

(tjmodn) → t = 41 · 28 · 57mod 77 = 63

H(t,m) = 15

sj = gjr
H(t,m)
j modn → s1 = 5·615mod 77 = 72 s2 = 9·715mod 77 = 35 s3 = 59·815mod 77 = 73

s =
l∏

j=1

(sjmodn) → s = 72 · 35 · 73mod 77 = 7

σ = (63, 7)

3.3 Multisignature verification

se = (

l∏
j=1

ij) t
H(t,m)modn

717mod 77 = 3 ∗ 4 ∗ 5 ∗ 6315mod 77

28 = 28 → valid.

3



4 Analysis

The proposed scheme respects the two properties mentioned in Section 1.1 because the size of the signature
σ does not depend on the number of signers and because we use only one modular exponentiation in the
verification procedure. It has also some other relevant properties:

• It is based on RSA, that is one of the most well-known and easy to implement asymmetric signature
schemes;

• It is based on the Identity based RSA, so we also don’t have the problem of public key authenticity
after distribution, there is no need for a PKI. This because the public keys are supposed to be known
being the identities of the signers;

• Shamir’s IBS scheme is computationally secure against chosen-message forgeability attack, and since
this scheme is based on it it can be proven that it is also computationally secure under the same attack;

• The probability that two groups of people’s identities combined together generate the same multisig-
nature (multi-signer collusion) is negligible (considering real identities factors such as the e-mail, not
small numbers as in the example.);

The scheme has also some drawbacks:

• What to use as identity must be chosen carefully: for example, using a simple ID of the employee (a
small number) could result in an increase in the probability of having multi-signer collusion;

• Being and identity based scheme, it inherits all the problems of this kind of approach:

– The PKG module is the trusted element of the system since it generates and holds all the public
keys;

– For the same reason also the connection between the signers and the PKG must be secure, confi-
dential;

– If for some reasons a public key must be changed then it is difficult to manage the related process,
because it should reflect into a change of the user identification (e.g. the e-mail).

5 Conclusion

In conclusion, the multisignature approach described in [2] is easy to implement, based on the well-known
RSA IBS scheme (from which it also inherits some drawbacks as described in Section 4), computationally
secure, and it adheres to the two properties mentioned in Section 1.1.

References

[1] Math crypto calculator - brown university. http://www.math.brown.edu/~jhs/MA0158/

MathCryptoCalc.02.html. Accessed: October 5, 2015.

[2] Lein Harn and Jian Ren. Efficient identity-based {RSA} multisignatures. Computers & Security,
27(1–2):12 – 15, 2008.

4


