
1

IN4191 SECURITY AND CRYPTOGRAPHY 2015-2016

Assignment 1 - Report
Eric Camellini

4494164
e.camellini@student.tudelft.nl

Abstract—In this report, I explain how I deciphered a message
encrypted with a simple substitution cipher. I focus on how I used
frequency analysis to understand the substitution pattern and I
also give a brief explanation of the cipher used.

I. INTRODUCTION

The objective of this work was to decipher an encrypted
message using frequency analysis or brute forcing, knowing
that:

• It seemed to be encrypted using a simple cipher;
• It was probably written without spaces or punctuation;
• The language used could be English, Dutch, German or

Turkish.
The ciphertext was the following:

VaqrprzoreoeratraWhyvhfraJnygreUbyynaqreqrgjrroebrefi
naRqvguZnetbganneNzfgreqnzNaarjvytenntzrrxbzraznnezbrga
btrrarragvwqwrovwbznoyvwiraBznmnyurgzbrvyvwxuroorabz
NaarabtrracnnejrxraqnnegrubhqrafpuevwsgRqvguSenaxvarra
oevrsnnaTregehqAnhznaauhaiebrtrerohhezrvfwrvaSenaxshegn
zZnva

II. METHODS

To solve the problem, I first applied the frequency analy-
sis technique: I wrote a Python program that computes the
frequency of every letter in the ciphertext, then replaces each
character with the corresponding one in the letter frequency
order of the selected language 1. The program also allows
to manually perform further substitutions. This approach was
based on some pre-processing:

• The ciphertext was lowercased before the substitution;
• In the alphabets of the four possible languages, only the

26 traditional Latin characters were considered.
I then used the described program to analyze the ciphertext

and to search for a pattern in the substitution scheme, trying to
switch between the four languages and to search for existing
words after the letter replacement. Later I also extended the
program with a spell checker function using the PyEnchant 2

1http://letterfrequency.org/ - letter frequencies source.
2http://pythonhosted.org/pyenchant/

library: this function finds existing words in the text using a
dictionary of the selected language.

With this approach I observed that after the frequency-based
letter replacement the language with more word matches (with
a minimum word length of 3 characters) was Dutch, so I
focused on it trying to compare its letter frequency with the
one of the ciphertext. The letters in order of frequency were
the following:

Ciphertext: ”ranevzbgqhoutwyfsxjipcm”
Dutch language: ”enatirodslghvkmubpwjczfxyq”

Looking at the two lists I observed the following pattern:

• The first 3 most frequent letters in the text have (r, a,
n) a 13 letters distance in the alphabet from the 3 most
frequent ones in the Dutch language (e, n, a).

• Other frequent letters preserve this 13 letters distance
pattern: for example the letters ’e’ and ’v’ are in the 6
most frequent letters in the ciphertex, and they are 13
letters distant from ’r’ and ’i’ respectively, that are in
the 6 most frequent ones in the Dutch language.

On the base of this observation, I made a script that performs
a substitution like the one shown in Figure 1, for both lower
and upper case letters, and with it I successfully deciphered
the text. Results are shown in Section III and the source code
of the scripts can be found in the Appendices (A and B).

III. RESULTS

The output of the final script was the following text:

IndecemberbrengenJuliusenWalterHollanderdetweebroersv
anEdithMargotnaarAmsterdamAnnewilgraagmeekomenmaar
moetnogeeneentijdjebijomablijvenOmazalhetmoeilijkhebbeno
mAnnenogeenpaarwekendaartehoudenschrijftEdithFrankineen
briefaanGertrudNaumannhunvroegerebuurmeisjeinFrankfurta
mMain

It is Dutch text without spaces and punctuation, as hypoth-
esized.



2

A. The Cipher

The cipher used to encrypt the message is the ROT13
Caesar’s cipher 3, a simple substitution cipher that replaces
each letter of the plaintext with the letter that is 13 positions
after it in the alphabet (Figure 1). Because the alphabet is
seen as a circular structure and contains 26 letters, the same
function can be used for encrypting and decrypting.

IV. CONCLUSION

In conclusion, I successfully decrypted the given message,
showing how easy is to break a simple Caesar cipher using
frequency analysis and human intuition. Once discovered the
substitution scheme, a simple script can easily decipher the
text without a significant computational effort.

V. DISCUSSION

In this section I propose two possible improvements in the
cipher used, to make the deciphering more difficult:

• This kind of cipher could be improved by using substi-
tution units larger than one single character, in order to
increase the number of possibilities (i.e. a single letter
can be replaced with the remaining 25, while a couple
can be replaced with all the possible different couples of
letters). In order to choose the replacement units many
schemes could be invented, or there could be a fixed
substitution table. Notice that frequency analysis can be
done also on units larger than one single character, but
it requires more effort and it is less effective.

• A further improvement could be using a substitution
table where every row is a permutation of the alphabet
and the letters in the plaintext address the column (e.g.
the first column is the letter that will replace the A, the
second one for the letter B and so forth). A shared key
could then be used to address the correct row for the
whole message or for every character.

APPENDIX A
ROT13 PYTHON SCRIPT

Source code of the final deciphering script:

3See https://en.wikipedia.org/wiki/ROT13 for more information.

Fig. 1: Rot13 cipher table[1]

import sys

def substitute(text, dictionary):
"""Substitute each char in ’text’
using ’dictionary’ as a map for the
substitution pattern."""
output = ""
for i in text:

output = output + dictionary[i]
return output

def rot13_dict():
"""Generate the rot13
substitution dictionary"""
d = {}
for i in range(0, 13):

char1 = chr(ord(’a’) + i)
char2 = chr(ord(char1) + 13)
d[char1] = char2
d[char2] = char1
char1 = chr(ord(’A’) + i)
char2 = chr(ord(char1) + 13)
d[char1] = char2
d[char2] = char1

return d

if __name__ == "__main__":
if(len(sys.argv) != 2):

print "Missing argument - Usage:"
print "python rot13.py text"
sys.exit()

text = sys.argv[1]
print substitute(text, rot13_dict())

APPENDIX B
FREQUENCY ANALYSIS SCRIPT

Source code of the program used to perform frequency
analysis on the ciphertex (simplified version, without language
selection):

from collections import Counter
import os
import enchant

def match_count(language_dict, c, min, max):
count = 0
for i in range(len(c)):

for j in range(i + min, i + max + 1):
if(j <= len(c)):

word = c[i: j]
if(language_dict.check(word)):

count = count + 1
print word, " ",

print ""
return count

if __name__ == "__main__":
c = #ciphertext string
sub_dict = {}
dutch_freq = "enatirodslghvkmubpwjczfxyq"



3

d_nl = enchant.Dict("nl")
freq = Counter(c.lower()).most_common()
f = [x[0] for x in freq if (x[0] != ’\n’)]
sub_dict = dict(zip(f, dutch_freq))
while(1):

os.system(’clear’)
sub_c = ""
for l in c.lower():

if(l in sub_dict):
sub_c = sub_c + sub_dict[l]

else:
sub_c = sub_c + l

print "\nSUBSTITUTIONS: "
print sub_dict
print "\nTEXT WITH SUBSTITUTIONS:"
print sub_c
print "\nMATCHES: "
count = match_count(d_nl, current_c)
print count, " Words mathing."
s1 = raw_input("\nIns. char to sub: ")
s2 = raw_input("Ins. the new char: ")
sub_dict[s1] = s2

REFERENCES

[1] Benjamin D. Esham, https://en.wikipedia.org/wiki/ROT13#/media/File:
ROT13 table with example.svg, Wikimedia Commons, 2007.


