
UNIVERSITÀ DEGLI STUDI DI PARMA
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA, ELETTRONICA

E DELLE TELECOMUNICAZIONI

PROGETTAZIONE E SVILUPPO DI UN
CROSS-PROXY PER L’INTEROPERABILITÀ

TRA PROTOCOLLI APPLICATIVI IN SCENARI
DI INTERNET OF THINGS

DESIGN AND IMPLEMENTATION OF A CROSS-PROXY FOR THE

INTEROPERABILITY AMONG APPLICATION-LAYER PROTOCOLS IN

INTERNET OF THINGS SCENARIOS

Relatore:

Chiar.mo Prof. Ing. Simone Cirani

Correlatore:

Dott. Ing. Marco Picone

Tesi di Laurea di:

ERIC CAMELLINI

ANNO ACCADEMICO 2013/2014

Dedico questa tesi al WASN Lab e in particolare ai Prof. Simone Cirani e Marco

Picone, che mi hanno seguito durante tutta l’attività, che hanno valorizzato quel

che ho sviluppato, integrandolo in progetti dell’intero laboratorio, e che mi hanno

trasmesso la passione per gli ambiti trattati.

Contents

1 Introduction 1

1.1 IP-based Internet of Things . 1

1.2 Low-power and lossy networks . 2

1.2.1 6LowPAN . 2

1.2.2 RPL . 3

1.2.3 CoAP . 3

1.3 IoT scenarios and Smart-X applications 4

1.3.1 Smart Manufacturing . 5

1.3.2 Smart Cities . 5

1.4 Thesis objectives . 6

2 State of the art 7

2.1 RESTful architecture and applications 7

2.2 CoAP protocol . 10

2.2.1 CoAP messaging . 11

2.2.2 CoAP extensions . 13

2.3 CoAP related work . 14

2.3.1 mjCoAP . 14

2.3.2 Other CoAP libraries . 16

i

CONTENTS ii

2.3.3 Copper (Cu) . 16

2.3.4 Contiki OS . 17

2.4 Other protocols and utilities . 18

2.4.1 Dev HTTP Client (DHC) . 18

2.4.2 Jetty HTTP server . 18

3 HTTP-to-CoAP Cross-Proxy 19

3.1 Use cases examples . 20

3.2 Forward Proxy and Reverse proxy . 21

3.3 URI mapping . 22

3.3.1 Possible mapping templates 22

3.4 Protocol translation . 24

3.4.1 HTTP-to-CoAP request translation 25

3.4.2 CoAP-to-HTTP response translation 26

3.5 Implementation . 27

3.5.1 The HTTP Server . 28

3.5.2 The Translator . 29

3.5.3 The CoAP Client . 29

3.5.4 Other components . 29

3.6 Using the Cross-Proxy . 30

4 CoAP Extensions 32

4.1 Blockwise Transfer . 32

4.1.1 Block1 example . 33

4.1.2 Block2 example . 34

4.1.3 Size1 and Size2 options . 35

4.1.4 Implementation . 35

CONTENTS iii

4.1.5 Using the Blockwise Transfer 36

4.2 Resource observing . 36

4.2.1 Registering and receiving notifications 37

4.2.2 Stopping observing resources 37

4.2.3 Implementation . 37

4.2.4 Using the Observe option . 38

4.3 Other extensions . 40

4.3.1 CoapFormat . 41

4.3.2 CoapUtil . 42

5 Experimental evaluation 44

5.1 Demonstrative IoT Scenario . 45

6 Conclusions and future work 50

Bibliography 53

Chapter 1

Introduction

1.1 IP-based Internet of Things

Figure 1.1: A possible IoT Scenario.

The Internet of Things (IoT) can be de-

fined as the network of physical objects

accessed through the Internet [1]. The

concept was defined in early 2000s and

it is simple but powerful: if all objects in

daily life were equipped with identifiers

and wireless connectivity, these objects

could communicate with each other and

be managed by computers. At the time,

this vision required major technology improvements because there were many prob-

lems related to the connection of mobile objects or sensors, such as their reduced

battery life, their wireless connection issues, the costs, and the limited range of

addresses.

Today, many of these issues have been solved, the size and cost of wireless radios

1

Chapter 1. Introduction 2

has dropped dramatically and, due to the adoption of IPv6, it is possible to address

billions of devices. The IoT now describes a system where items in the physical

world (and sensors within or attached to these items) are connected to the Internet

in a wireless or wired way, as shown in Figure 1.1. These sensors can use various

types of local area connections (RFID, NFC, Wi-Fi, Bluetooth, or IEEE 802.15.4)

and can also have cellular connectivity (GSM, GPRS, 3G, or LTE).

1.2 Low-power and lossy networks

Low-power and Lossy networks (LLNs) are made up of many embedded devices

with limited power, memory, and processing resources. They can be interconnected

by a variety of protocols, such as IEEE 802.15.4, Bluetooth and Low Power WiFi.

This thesis is focused on an applicaion-layer protocol suited to communication in

LLNs: the Constrained Application Protocol (CoAP) and on its related protocol

translation issues, detailed in Sections 1.2.3, 2.2 and Chapter 3, respectively.

1.2.1 6LowPAN

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [2] is an Inter-

net Engineering Task Force (IETF) working group (WG), chartered to bring IPv6

communication over LLNs. The idea is that the Internet Protocol could and should

be applied even to the smallest devices and that low-power devices with limited pro-

cessing capabilities should be able to participate in the Internet of Things. Following

this aim, the 6LoWPAN group has defined encapsulation and header compression

mechanisms that allow IPv6 packets to be sent to and received from IEEE 802.15.4

based network.

Other IETF WGs are working on other areas related to 6LoWPAN: for instance,

Chapter 1. Introduction 3

the Routing Over Low power and Lossy networks Working Group (ROLL) WG has

created a routing protocol for constrained node networks called RPL, and the CoRE

WG has defined CoAP.

1.2.2 RPL

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [3] is a routing

protocol designed for LLNs, which provides mechanisms to perform point-to-point,

multipoint-to-point, and point-to-multipoint traffic. This protocol is useful because

such networks typically feature traffic patterns that may not always be point-to-point

and that may potentially comprise up to thousands of nodes; these characteristics

offer unique challenges to a routing solution. The ROLL WG defined application-

specific routing requirements for LLN routing protocol and RPL was designed from

the WG itself with the objective to meet them.

1.2.3 CoAP

The Constrained Application Protocol (CoAP) [4] is a specialized application-layer

transfer protocol, created as a lightweight version of the HyperText Transfer Pro-

tocol (HTTP), to be used with constrained nodes and networks. The nodes often

have small amounts of ROM and RAM and limited microcontrollers (8-bit), while

constrained networks such as 6LoWPAN often have a limited throughput (tens of

kbit/s) and a high packet error rate. The protocol is designed for machine-to-

machine (M2M) applications such as smart energy and building automation: it

provides a request/response interaction model between application endpoints, sup-

ports the service/resource discovery in a built-in way, and includes key concepts of

the Web such as URIs and Internet media types for the content.

Chapter 1. Introduction 4

CoAP has been designed by the Constrained RESTful Environments (CoRE)

WG and one of its objectives is to easily interface with HTTP, and so be able to

integrate with the Internet, while meeting specialized requirements such as multicast

support, very low overhead, and simplicity for constrained environments. For the

integration needed in a IoT scenario, HTTP/CoAP protocol translation is necessary

to communicate between LLNs with CoAP and the Internet, as shown in Figure 1.2.

The construction of this translator component is a major achievement of this thesis,

which is detailed in Section 1.4.

Figure 1.2: A CoAP scenario and its interaction with the Internet.

1.3 IoT scenarios and Smart-X applications

The first application of IoT was to create a communication network between indus-

trial equipment, but in these days many more application have been found. Cisco

created a new definition that summarizes the objectives of the last researches in

Chapter 1. Introduction 5

this branch: Internet of Everything, that is, a network that could contain industrial

items but also everyday objects and living beings such as animals, to monitor and

track them, or plants. This new vision applied to industries or cities is the base for

the concepts described in Sections 1.3.1 and 1.3.2.

1.3.1 Smart Manufacturing

The basis for recent industrial improvement is the automatic communication be-

tween products, systems, and machines. With IoT and machine-to-machine (M2M)

communication, it is possible to foresee scenarios where sensors collect data and

share them with other industrial equipment, relying on intelligent networks along

the entire value chain that communicate and control each other autonomously, with

significantly reduced intervention by operators.

Stefan Ferber, Director for business development of the IoT at Bosch Software

Innovations, said: “Industry 1.0 was the invention of mechanical help, Industry 2.0

was mass production, pioneered by Henry Ford, Industry 3.0 brought electronics and

control systems to the shop floor, and Industry 4.0 is peer-to-peer communication

between products, systems and machines.” [5].

1.3.2 Smart Cities

A Smart City [6] is the city of the future, where IoT technologies are used to connect

things and people, according to their needs. It’s easy to find many applications of

IoT in urban scenarios, such as the optimization of services related to transportation

(e.g., traffic management, parking, and transit systems). Singapore has adopted

an intelligent transport strategy and set of systems that made it one of the least

congested major cities. It has an express way monitoring and advisory system that

Chapter 1. Introduction 6

alert motorists, a GPS system installed on the city taxis, which monitors and reports

traffic conditions, and a Control Centre, which consolidates the data and provides

real-time traffic informations to the public.

Another possible application are smart parkings: wireless sensors embedded in

parking spots that can gather their real-time status tracking if a spot is occupied or

empty, and send this information to a data management system, linked to servers

and/or mobile applications, which can be used by drivers. These examples of IoT ap-

plications in urban scenarios show how the smart city approach could bring positive

societal impact, such as the minimization of traffic congestion, reduction of carbon

emissions and elimination of inefficiencies associated with parking enforcement.

1.4 Thesis objectives

The main objective of this thesis is to develop a Cross-Proxy implementing HTTP-

to-CoAP protocol translation with the support the mjCoAP library (detailed in

Section 2.3.1), allowing a constrained network to be accessed from the Internet with

the most used application-layer protocol (i.e., HTTP). This part is explained in

Chapter 3.

Another objective, together with the development of the Cross-Proxy, is to ex-

tend that mjCoAP library with other external packages implementing some of the

CoAP extra functions described in other drafts defined by the IETF CoRE Work-

ing Group. In particular, this work is focused on the Observing and the Blockwise

Transfer functions (detailed in Chapter 4), and also on the improvement of the

mjCoAP library’s main features.

Chapter 2

State of the art

In this chapter, an overview of IoT-related work is presented, focusing on the CoAP

protocol and its implementation. The IETF CoRE working group has designed

CoAP with the aim at realizing the REST architecture in a suitable form for con-

strained nodes.

2.1 RESTful architecture and applications

The REpresentational State Transfer (REST) [7] is an architectural model intended

to easily create, read, update or delete informations on a server using simple HTTP

calls. It is an alternative to more complex mechanisms like Simple Object Access

Protocol (SOAP), Common Object Request Broker Architecture (CORBA) and

Remote Procedure Call (RPC). A REST call is simply an HTTP request to a server.

CoAP has the same call structure because it is based on this architectural style.

More generally, REST is a software architectural style consisting of a coordinated

set of constraints applied to components, connectors, and data elements within a

distributed hypermedia system.

7

Chapter 2. State of the art 8

The REST architectural style was developed by World Wide Web Consortium

Technical Architecture Group (W3C TAG) in parallel with HTTP 1.1 and the World

Wide Web represents the largest implementation of a system conforming to the

REST architectural style. The REST architecture involves three kind of elements:

• Components provide the data through an interface;

• Connectors connect the components;

• Data are transferred between components using the connectors.

The architectural properties of REST are realized by applying some interaction

constrains to the mentioned elements, so that the creation of new REST based

protocols and extensions would not violate them, because they are what makes the

web successful. Some of these restrictions that the components must conform to

are:

• Client - Server model: a server owns the data and a client can request

these data, providing them to the user through an interface. In some cases the

client/user can modify these data using that interface.

• Stateless model: a request contains everything that is needed to provide a

response, with no need to save the client’s state on the server.

• Caching support: a client can cache responses saving them on its internal

memory.

• Layered structure: a client cannot know if it is connected to an intermediary

server or to an endpoint of the network.

• Code on demand support: a server can transfer code to clients temporary

extending their functionalities.

Chapter 2. State of the art 9

REST is also applied to services and resources provided by a server by using

service APIs that adhere to the REST constraints and are called RESTful. RESTful

APIs are defined with a base Uniform Resource Identifier (URI) [8], which is a

string used to identify a resource, like http://example.com/resources/resource1, an

Internet media type for the data (e.g., JSON) and standard HTTP methods (verbs)

to interact with these resources (GET, PUT, POST, or DELETE).

The standard syntax of a URI is shown in Figure 2.1.

Figure 2.1: URI Syntax; in detail, the authority can be divided in host and
port where the host can be a name or an IP address (www.example.com:8080 or
192.168.0.1:8080). The path section could contain more elements divided by a ”/”
and the same is for the query section, where the elements are separated by the
character ”&”.

The REST HTTP standard methods are the same used in CoAP and are the

way to access the resources. These methods are listed below and an example of a

REST communication is shown in Figure 2.2:

• GET: used to retrieve the content/state of a resource;

• PUT: used to modify or update a resource;

• POST: works like PUT method, but allows to create a new resource if it

doesn’t exists;

• DELETE: used to delete a resource.

Chapter 2. State of the art 10

Figure 2.2: A REST Client - Server communication.

2.2 CoAP protocol

The Constrained Application Protocol [4] has been designed to provide a realization

of the REST architecture in a suitable form for constrained nodes: the goal of CoAP

is not to simply compress HTTP (which is too heavy for constrained devices), but

rather to realize a subset of REST common with HTTP and optimized for M2M

applications in LLNs, with related specific functions, like the multicast support.

Designed by the IETF CoRE Working Group, the final version of the CoAP draft

(version 18) has just become an IETF standard (RFC 7252). Like HTTP, CoAP is

an application-layer protocol and must run on top of a transport-layer protocol: it

uses UDP so it shares with it the maximum packet size, the unreliability problems,

and the absence of a pre-established connection during the transmission.

Unlike HTTP (which is a text-based protocol) CoAP is a UDP-based binary

protocol that sends messages under the form of byte arrays and, like HTTP, can

Chapter 2. State of the art 11

access to a resource through a request, that must be sent to the resource URI: a

CoAP URI has the standard syntax, the URI scheme must be coap:// and the

default port of the protocol is 5683. The request possible methods are the ones

listed before (GET, POST, PUT and DELETE, as detailed in Section 2.1) and they

operate the same way HTTP does.

Another similarity with HTTP is that a response is returned to the client after a

request, and contains a code that indicates the result of the attempt to understand

and satisfy it: this code uses the format c.dd, where c is the class (1-5), and dd is

the detail as a two-digit decimal (for instance, 4.04 Not Found, the class is 4 that

stands for “client error”).

2.2.1 CoAP messaging

The CoAP messaging model is based on the exchange of messages (byte arrays) over

UDP between endpoints, with optional reliability. CoAP uses a short fixed-length

binary header (4 bytes) that may be followed by compact binary options (similar

to the HTTP headers) and a payload (content). This message format is shared by

requests and responses and each message contains a Message ID, used to detect

duplicates, and a token used to match responses to requests.

There are four message types: Confirmable (used to provide reliability), Non-

confirmable, Acknowledgement and Reset. If a message is confirmable (CON) the

recipient must respond with an acknowledgement (ACK) that has the same mes-

sage ID, or with a reset (RST) if it’s not able to respond. If no ACK response

is returned prior to a retransmission timeout (with exponential back-off), the mes-

sage is retransmitted. A message that does not require reliable transmission, for

example each single measurement out of a stream of sensor data, can be sent as

Chapter 2. State of the art 12

Non-confirmable (NON) and it will not be followed by an ACK (the RST is optional

also, in case of inability to process it).

Another important mechanism is the piggy-backed response: if a message is CON

the response could be sent from the recipient after the acknowledgement, in another

message, or in the same message. In the last case that we mentioned, the response

will be an ACK with also a response code and an optional payload, and it’s called

piggy-backed response. An example is shown in Figure 2.3.

Figure 2.3: CoAP communication with separated and piggy-backed response.

Another important part of CoAP messages is options. Options have the role to

add informations to a message, for example the media type of the payload or what

media type will be accepted in response. Each option instance specifies the Option

Number of the defined CoAP option, the length of the Option Value and the Option

Value itself. It must be noticed that in CoAP the path and query sections of the

Chapter 2. State of the art 13

URI are split in their components and sent in a series of URI-path and URI-query

options.

Finally, it is also worth mentioning that a secure version of CoAP exists: DTLS-

secured CoAP. Just like HTTP is secured using Transport Layer Security (TLS)

over TCP (and the URI scheme is https://), CoAP is secured using Datagram TLS

(DTLS) and the URI scheme coaps://.

2.2.2 CoAP extensions

CoAP has also been extended with some other related drafts that can be found on

the CoRE WG page of the IETF website (http://tools.ietf.org/wg/core/). The most

prominent drafts are:

• Observe: with this extension a client can perform a registration to a resource

through a GET request with the new CoAP Observe option, and then it’ll re-

ceive notification messages with the new values when this resource changes [9];

• Blockwise Transfer: using this kind of transfer allow to split a CoAP request

or response in a certain number of chunks that will be sent as different CoAP

messages. It is useful because of the limited memory of constrained nodes,

that sometimes can’t handle big payloads, or if the message reaches the UDP

maximum packet size [10];

• HTTP mapping: this draft’s objective is to define the rules for the HTTP

to CoAP protocol translation and vice versa, along with the guidelines for the

development and the placing of a proxy used for that scope [11].

This detailed functionalities and issues related to their implementation will be ex-

plained in Chapter 3 and Chapter 4.

Chapter 2. State of the art 14

2.3 CoAP related work

2.3.1 mjCoAP

MjCoAP is an open-source implementation of the CoAP protocol based on Java and

developed by the University of Parma. It supports the final version the CoAP draft,

therefore RFC 7252, and provides a set of classes to develop Java applications for

CoAP messaging. The most relevant classes and interfaces provided by the library

are the following:

• CoapMessage: a generic CoAP message;

• CoapProvider : a class for sending and receiving messages, used with a Coap-

ProviderListener that intercepts them;

• CoapTransactionServer : a class that defines methods to send responses inter-

cepted by a CoapTransactionServerListener;

• CoapTransactionClient : a class that defines methods to send requests and to

receive the related responses through a CoapTransactionClientListener;

• Utilities : there are many other classes made to implement other CoAP aspects

or to create objects like CoapMessageFactory, CoapOption, CoapMethodCode.

A simple CoAP client with a method that can send a GET request is shown in

Listing 2.1, while a simple CoAP server listening for GET and POST requests, but

that handles only the former, is shown in Listing 2.2.

Chapter 2. State of the art 15

1 public class CoAPClient{

2 CoapProvider coapProvider;

3 public CoAPClient(int coapPort) throws IOException {

4 this.coapProvider = new CoapProvider(coapPort);

5

6 public void sendPOSTMessage(String payload, SocketAddress destAddr){

7 CoapMessage coapRequestMessage = CoapMessageFactory.createRequest(false,

CoapMethodCode.POST, payload.getBytes());

8 new CoapTransactionClient(this.coapProvider,destAddr,this).request(

coapRequestMessage);

9 //using "this" as parameter for the listener means that this class will receive

the response

10 }

11 //To catch the responses this class must implement the CoapTransactionClientListener

or the CoapProviderListener interfaces

12 }

Listing 2.1: mjCoAP client example.

1 public class SimpleCoAPServer implements CoapProviderListener{

2 CoapProvider coapProvider;

3 public SimpleCoAPServer(int coapPort){

4 try {

5 this.coapProvider = new CoapProvider(coapPort);

6 this.coapProvider.addListener(CoapMessageSelector.messageMethodSelector(

CoapMethodCode.GET),this);

7 this.coapProvider.addListener(CoapMessageSelector.messageMethodSelector(

CoapMethodCode.POST),this);

8 } catch (SocketException e) {

9 e.printStackTrace();

10 }

11 }

12

13 @Override

14 public void onReceivedMessage(CoapProvider coap_provider, CoapMessage msg) {

15 if(msg.getCode()==CoapMethodCode.GET){

16 String response = "{\"value\":\"test\"}";

17 new CoapTransactionServer(coap_provider,msg,listener).respond(

CoapResponseCode.responseCode(2,5),response.getBytes());

Chapter 2. State of the art 16

18 }

19 else{

20 //Method not allowed 4.05

21 new CoapTransactionServer(coap_provider,msg,listener).respond(

CoapResponseCode.responseCode(4,5),null);

22 }

23 }

24 }

Listing 2.2: mjCoAP server example.

2.3.2 Other CoAP libraries

Along with mjCoAP, there are other relevant projects that implement CoAP. The

most prominent are:

• Califorium (Cf) is another open source Java based library to support the

CoAP communication, developed by a research lab. of the ETH Zurich (Swiss

Federal Institute of Technology);

• Libcoap is a library for the C language CoAP support, the one the TinyOS

CoAP implementation is based on (Tiny OS is an operating system for con-

strained nodes like Contiki OS – see Section 2.3.4);

• Erbium (Er) (see Section 2.3.4) is a C-based library, official CoAP Implemen-

tation for Contiki OS, and it has been developed by the same team that created

Californium.

2.3.3 Copper (Cu)

Copper (Cu)1 is a Firefox extension that installs a handler for the coap URI scheme

and allows users to browse and interact with IoT devices. Developed by the same
1https://addons.mozilla.org/it/firefox/addon/copper-270430/

Chapter 2. State of the art 17

team from that released Californium and Erbium (see Section 2.3.2), it supports

interaction through GET, POST, PUT, and DELETE, handles the automatic re-

transmission in case of unreceived ACK, and many other functionalities. It also

implements some extensions mentioned in Section 2.2.2 like Blockwise Transfer, re-

source observing and the related notification receiving. It is really useful for testing

CoAP applications.

2.3.4 Contiki OS

Contiki is an open source operating system for networked, memory-constrained sys-

tems with a particular focus on low-power wireless IoT devices. Contiki was created

by Adam Dunkels at the Swedish Institute of Computer Science (SICS) in 2002 and

has been further developed by a world-wide community of people and organizations.

Even though it provides complex features, such as multitasking and a built-in full

protocol stack, it only needs a few kilobytes of memory: for instance, a full sys-

tem, complete with a graphical user interface, uses about 30 kilobytes of RAM. The

system supports the recently standardized IETF protocols for low-power IPv6 net-

working, including the 6LowPAN adaptation layer, the RPL IPv6 routing protocol,

and the CoAP RESTful application-layer protocol.

Support for CoAP is possible with the Erbium (Er) library, a low-power REST

Engine that includes a comprehensive embedded CoAP implementation, which be-

came the official one for Contiki OS. It supports draft-ietf-core-coap-03, draft-

ietf-core-coap-12, draft-ietf-core-coap-13, and draft-ietf-core-coap-18, together with

Blockwise Transfer and observing function (see Section 2.2.2). Another important

feature is the possibility to use Cooja, the Contiki network simulator, which makes

developing and debugging tremendously easier. It provides a simulation environment

Chapter 2. State of the art 18

that allows developers to both see their applications run in large-scale networks or

in extreme detail on fully emulated hardware devices. [12]

2.4 Other protocols and utilities

CoAP is not the only application-layer protocol that can be used for the smart-

object communication. For instance, HTTP that is based on text (i.e. on trans-

ferring sequences characters) and is the standard for Internet navigation. Another

application-layer protocol is BitTorrent, used to transfer large amounts of data on

a peer-to-peer communication and often used in file sharing. Other protocols also

based on different architectures (not RESTful) may also be used.

2.4.1 Dev HTTP Client (DHC)

DHC is a Google Chrome Extension, which implements a REST HTTP Client. It

has been used in the thesis as a HTTP client for testing of the HTTP-to-CoAP

Proxy. Using DHC as a testing client allows to select all the message headers, the

content and everything else is needed.

2.4.2 Jetty HTTP server

The HTTP-to-CoAP Cross-Proxy acts on the HTTP side as an HTTP server that

will receive the messages to be translated. Jetty is a pure Java based HTTP (Web)

server developed by the Eclipse Foundation. It can handle different requests simulta-

neously, in multi-threading, and allows to set a fully customizable request handler.

Chapter 3

HTTP-to-CoAP Cross-Proxy

CoAP has been designed with the objective to be an application-layer protocol spe-

cialized for constrained environments and to be easily used in REST architectures

such as the Web. One of the related issues is that CoAP should be able to easily inter-

operate with HTTP through an intermediary proxy which performs cross-protocol

conversion, so that the devices on the Internet could communicate with a CoAP

node directly with the constrained protocol, if supported, or via HTTP through the

proxy, as shown in Figure 3.1.

One of the main issues in the development of this network element is protocol

translation: an HTTP message addressed to a constrained node must pass through

the proxy, which converts it to a CoAP message with the same options (if com-

patible) and characteristics. The proxy then waits for the response from the node

and returns it to the HTTP client after another conversion, this time from CoAP

to HTTP. Another problem is addressing, because the message must be sent to the

proxy with an HTTP URI, but should point to a CoAP resource, whose URI should

be contained in the HTTP URI.

In this chapter, these issues and the solutions chosen during the development

19

Chapter 3. HTTP-to-CoAP Cross-Proxy 20

of the Java based HTTP-to-CoAP (HC) Cross-Proxy are discussed. In order to

guarantee full interoperability, the IETF CoRE WG guidelines of the http-mapping

draft [11] have been followed.

Figure 3.1: A CoAP network with a Cross-Proxy.

3.1 Use cases examples

To illustrate in which situations HTTP-to-CoAP request mapping may be used,

some use cases are briefly described:

• Smartphone and sensors : A smartphone, when in the same network of a sensor,

can perform CoAP requests directly to it. When the smartphone is at a remote

location, the same request could be done by an authenticated ”https” request

from the smartphone over an external IP network (the Internet) through an

HTTP-CoAP proxy;

Chapter 3. HTTP-to-CoAP Cross-Proxy 21

• Making sensor data available: An HTTP-to-CoAP proxy could be configured

to expose sensor data to the world via the web (HTTP and/or HTTPS). The

sensor can only handle CoAP requests, and data are exposed by sending HTTP

requests to the proxy.

3.2 Forward Proxy and Reverse proxy

It is possible to implement two kinds of proxy:

• Forward Proxy: a message forwarding agent that is selected by the client,

usually via local configuration rules, to receive requests of absolute URI and

to attempt to satisfy them via protocol-translation, where the protocol is indi-

cated in the URI. In this case the user decides to use the proxy for a predefined

subset of the URI space.

• Reverse Proxy: a receiving agent that translates the received requests to

the underlying server’s protocol. It behaves as an origin (HTTP) server on its

connection towards the (HTTP) client and as a (CoAP) client on its connection

towards the (CoAP) origin server.

Forward and Reverse proxies are very similar: the main difference is the former

is set as a client configuration setting, that addresses the messages through it, while

when using the latter, the client is unaware it is communicating with a proxy, that

so it is seen as a server (HTTP) that publishes the resources. In this work, a reverse

proxy has been implemented.

Chapter 3. HTTP-to-CoAP Cross-Proxy 22

3.3 URI mapping

URIs are formed of different components, as described in Section 2.1, and it is

important to know that the URI scheme does not imply that a particular protocol

is used to access the service, so it is possible to define the same resource to be

accessible by different protocols. The problem is that HTTP clients typically only

support http:// and https:// schemes, so they cannot directly access CoAP servers

(which support coap:// and/or coaps://). To solve that issue the client must “pack”

the CoAP URI into an HTTP URI so that it can be (non-destructively) transported

from the user agent to the HC Proxy that can then “unpack” the CoAP URI and

finally de-reference it via a CoAP request to the target node.

3.3.1 Possible mapping templates

There are different choices for the packing of the request URI, and all of them require

the base URI of the proxy. So it’s important to say that the Cross-Proxy must be

started with a pre-defined base URI. Below are listed (as examples) the possible

URI encapsulations, using the base URI http://p.example.com/hc:

• Default with the CoAP URI in the path component:

http://p.example.com/hc/coap://s.example.com/light?dim=5

• Default with optional scheme (without ’coap://’):

http://p.example.com/hc/s.coap.example.com/foo

• As query element with ’coap’ scheme):

http://p.example.com/hc?coap_target_uri=coap://s.example.com/light

• As query element with ’coaps’ scheme):

http://p.example.com/hc?coaps_target_uri=coaps://s.example.com/light

Chapter 3. HTTP-to-CoAP Cross-Proxy 23

• As query element with ’coap’ or ’coaps’ scheme:

http://p.example.com/hc?target_uri=coaps://s.example.com/light

http://p.example.com/hc?target_uri=coap://s.example.com/light

• Enhanced form with CoAP URI components in path segments and optional

query in query component:

http://p.example.com/hc/coap/s.example.com/light?on

• Enhanced form with CoAP URI components split in individual query argu-

ments:

http://p.example.com/hc?s=coap& hp=s.example.com& p=/light& q

http://p.example.com/hc?s=coaps& hp=s.example.com& p=/light& q=on

When the authority of the target CoAP URI is given as an IPv6 address, the

surrounding square brackets must be percent-encoded in the hosting HTTP URI, in

order to comply with the syntax defined in URI RFC for a URI path segment, and

also the % symbol must percent encoded if present in an IPv6 address. Everything

else can be safely copied from the Target CoAP URI to the Hosting HTTP URI.

For example:

coap://[2001:d%b8::1]/light?on

becomes

http://p.example.com/hc/coap://%5B2001:d%25b8::1%5D/light?on.

All these templates of mapping are supported by the proxy developed in this

thesis, along with the discovery function that allow to fetch informations on these

possible URI packing methods from the HTTP side by sending the following request

to the proxy:

GET http://p.example.com/.well-known/core?rt=core.hc

Chapter 3. HTTP-to-CoAP Cross-Proxy 24

3.4 Protocol translation

In our reverse proxy scenario a client sends an HTTP request to the proxy with

the encapsulated CoAP URI that must be extracted (see Section 3.3). The HTTP

message must then be translated in a CoAP message and the proxy, like a CoAP

client, sends it to the node addressed by the extracted URI. In the developed proxy

this CoAP request is implemented as a blocking one, so the message handler waits

for the response from the CoAP node and converts it into an HTTP response. This

response is then retuned to the first client: an example is shown in Figure 3.2).

Figure 3.2: The flow of an HTTP request that passes through the proxy.

All this steps are transparent to the client, which may assume it is communicating

with the intended target HTTP server that exposes the resources directly, without

retrieving them from nodes of a CoAP sub-network. Because of that the proxy must

be placed at the edge of the constrained network, running on a component that also

provides an HTTP interface to the external network.

Another function that can be implemented on the proxy is caching of the CoAP

Chapter 3. HTTP-to-CoAP Cross-Proxy 25

responses from the CoAP nodes. In this way, the proxy would be able to directly

handle an HTTP request.

3.4.1 HTTP-to-CoAP request translation

The translation of a request consists in different parts that must be analysed and

converted from HTTP to CoAP. The main steps, which have been implemented,

are:

1. Method translation: it’s easy to extract the CoAP equivalent of the HTTP

request’s method since, as described in Section 2.1, the standard methods are

the same (i.e., GET, POST, PUT, and DELETE). If the proxy receives an

HTTP request with a method that CoAP doesn’t support (e.g. OPTIONS,

HEAD, TRACE or CONNECT) the response will be 501 Not Implemented.

2. URI mapping: the URI is extracted if received in the form of one of the

templates described in Section 3.3. The CoAP node address is extracted from

authority and the various URI-path and URI-query option chunks to be in-

flated in the translated request are extracted from the path and query parts.

If the URI encapsulation is not correct a 400 Bad Request response is sent to

the client.

3. Headers to Options: HTTP provides a large number of Headers for a mes-

sage, but only the ones that have a CoAP related Option can be translated.

Other options are discarded and only the compatible ones are converted (i.e.,

Accept, Content Type, If Match, If None Match and ETag ; Content Type

is translated as the Content-Format Option while the others have the same

name).

Chapter 3. HTTP-to-CoAP Cross-Proxy 26

4. Media type translation: Another issue of the protocol translation is that

HTTP supports hundreds of media types while CoAP only six of them in

the standard version. Those that can be mapped from HTTP are text/-

plain, application/link-format, application/xml, application/octet-stream, ap-

plication/json, and application/exi, all mapped as the one with the same name

for CoAP. If the HTTP media type is not supported by CoAP the message

cannot be translated and a 415 - Unsupported Media Type is sent in response.

5. Payload copying: If the Content Length HTTP header contains a value that

is not zero then there is a not empty body in the message, so it must be copied

in the CoAP message’s payload after its conversion into a byte array.

Note that some of these passages are not mentioned or clarified in the http-

mapping draft; in fact, these are choices made for the sake of implementation of the

Cross-Proxy.

3.4.2 CoAP-to-HTTP response translation

The translation of the response related to the CoAP request, previously converted

from the HTTP one, is a procedure similar to the one described in Section 3.4.1.

The main steps are:

1. Response code translation: the response is returned with a code that

must be mapped in the related HTTP one. Some codes are the same (e.g 2.01

Created mapped as 201 Created) but for many of them a direct mapping is

not possible. Table 3.1 shows the CoAP-to-HTTP response code mapping.

2. Options to Headers: this procedure is the opposite of the one described in

Section 3.4.1. The CoAP Options that can be translated into HTTP Headers

Chapter 3. HTTP-to-CoAP Cross-Proxy 27

are:

• Content-Format : mapped as the Content Type header;

• Location-Path and Location-Query : the chunks of this options, that rep-

resents the location (path and query) of a created resource, are joined

and inflated in the Content Location Header;

• Etag : translated as the Etag header, same name in this case;

• Max-Age: this last option that can be returned in the response is mapped

as the Cache Control header with the value "max-age=A" where A is the

Integer value of the option converted to String. A particular case is when

a response with code 5.03 is returned (see Table 3.1);

3. Media type translation: In that case there are no problems in the media

type mapping because all the CoAP standard formats that the response could

contain are translatable in HTTP, so they are mapped (As described in the

previous procedure, but in the opposite way) when the Content-Format option

is translated in the Content Type header;

4. Payload copying: if the CoAP message contains a payload, this is copied in

the HTTP message body as a string built from the byte array.

3.5 Implementation

The proxy implementation is based on the mjCoAP library (see Section 2.3.1), and

on three main components: the HTTP Server, the Translator, and the CoAP Client,

which are described next.

Chapter 3. HTTP-to-CoAP Cross-Proxy 28

3.5.1 The HTTP Server

The Cross-Proxy HTTP Server is the main class, HttpToCoapProxy, and was realized

by using Jetty HTTP Server 2.4.2 set up with a proper request handler. The message

handler is a class called HttpRequestHandler that extends the class AbstractHandler

of the Jetty library, and its code executes whenever an HTTP request arrives and

stops when the related response is sent. Jetty handles automatically the multi-

threading so when a message arrives, the handler manages it also if another message

is being served. The handler follows the next steps:

1. Initial checks: in this step the handler checks if the request method and

media-types can be translated into the CoAP related ones, by calling static

methods from the helper class HttpToCoapMapper. If the message doesn’t pass

through the checks a proper error is sent in response: 501 Not Implemented

or 415 Unsupported Media Type.

2. Request translation: if the message passes the checks it can be translated

to a CoAP request using the Translator.

3. Blocking request: the CoAP request obtained, after translation, is sent to

the proper address through the CoAP Client by calling a blocking method

that puts the server in a waiting status. When a CoAP response is returned

the execution restarts.

4. Response translation: to translate the CoAP response to an HTTP one a

Translator’s method is called.

5. Response sending: the HTTP final response is sent to the client.

If the final response returned by the CoAP Client is null a 404 Not Found error is

sent: that’s an implementation choice not mentioned in the draft.

Chapter 3. HTTP-to-CoAP Cross-Proxy 29

3.5.2 The Translator

The Translator class implements the ITranslator interface that contains two meth-

ods: the first returns a CoAP request from an HTTP one passed as a parameter,

and the second does the opposite translation with the response. An interface is

used so that different implementations of the ITranslator can be set for the message

handler. The implementation translates the messages by calling methods from the

helper classes described in Section 3.5.4.

3.5.3 The CoAP Client

For the CoAP side, a BlockwiseCoapClient, described in Section 4.1.5, is used. It’s

a blocking client as requested by the handler, its sendMessage() method sends the

CoAP request and returns the related response or a null value if no reply arrives in

29 second (Timeout). This client also handles the Blockwise Transfer as described

in Section 4.1. Proxy’s Timeout and Blockwise Transfer support are also mentioned

in the http-mapping draft [11] as optional features that the can be implemented.

3.5.4 Other components

The implementation of the ITranslator interface is based on four static classes:

HttpToCoapMapper, CoapToHttpMapper, HttpToCoapUriMapper, and WellKnown-

CoreHc. The former two handle the translation as described in Section 3.4 and the

latter two manage the URI mapping with discovery as described in Section 3.3.

Chapter 3. HTTP-to-CoAP Cross-Proxy 30

3.6 Using the Cross-Proxy

The code to start the HTTP-to-CoAP Cross-Proxy is shown in Listing 3.1. It is

also possible to set the parameters for the Blockwise Transfer (see Section 4.1) with

setter methods of the HttpRequestHandler ; If not set, the default values are used

(implementation choice).

1 int httpPort = 8080; //Default http port

2 int coapPort = 5683;

3

4 try{

5 CoapProvider coapProvider = new CoapProvider(coapPort);

6 String basePath = "/hc";

7 HttpRequestHandler httpHandler = new HttpRequestHandler(basePath,coapProvider,

new TranslatorDraft03());

8 HttpToCoapProxy proxy = new HttpToCoapProxy(httpPort,httpHandler);

9 proxy.start();

10 }catch (SocketException e){

11 e.printStackTrace();

12 }

Listing 3.1: HTTP-to-CoAP Proxy launcher example.

Chapter 3. HTTP-to-CoAP Cross-Proxy 31

CoAP code HTTP code
2.01 Created 201 Created
2.02 Deleted 200 OK

204 No Content
HTTP code is 200 or 204 respec-
tively in the case that a CoAP
server returns a payload or not.

2.03 Valid 304 Not Modified
200 OK
Depending on the caching op-
tions, not implemented in the de-
scribed proxy

2.04 Changed 200 OK
204 No Content
Like for the 2.02, see above

2.05 Content 200 OK
4.00 Bad Request 400 Bad Request
4.01 Unauthorized 400 Bad Request
4.02 Bad Option 400 Bad Request
4.03 Forbidden 403 Forbidden
4.04 Not Found 404 Not Found
4.05 Method Not Allowed 400 Bad Request
4.06 Not Acceptable 406 Not Acceptable
4.12 Precondition Failed 412 Precondition Failed
4.13 Request Entity Too Large 413 Request Repr. Too Large
4.15 Unsupported Media Type 415 Unsupported Media Type
5.00 Internal Server Error 500 Internal Server Error
5.01 Not Implemented 501 Not Implemented
5.02 Bad Gateway 502 Bad Gateway
5.03 Service Unavailable 503 Service Unavailable

The value of the HTTP "Retry-
After" response-header is taken
from the value of the CoAP Max-
Age Option, if present.

5.04 Gateway Timeout 504 Gateway Timeout
5.05 Proxying Not Supported 502 Bad Gateway

Table 3.1: Response codes mapping table.

Chapter 4

CoAP Extensions

In this chapter, the extra CoAP functionalities implemented, as specified in the

drafts on the IETF CoRE Working Group website (http://tools.ietf.org/wg/core/),

and the work done for the improvement of the mjCoAP library are described.

4.1 Blockwise Transfer

The Blockwise Transfer is a CoAP extra function, described in the related draft [10],

that allows the protocol to split a message in a certain number of chunks. The request

or responses are chunked in the following cases:

1. An arriving message is too big to be handled by the node, for example because

of the size of the buffer where the incoming ones are stored;

2. A message is too big to be sent, for example because of his payload size.

The size limit is called Blockwise Threshold and can be different for every imple-

mentation but the message, with all the header, cannot be larger than the UDP

maximum packet size (i.e. 65507 Bytes).

32

Chapter 4. CoAP Extensions 33

To implement that feature two new options are defined in the draft: Block1 and

Block2, that are used respectively in a chunked request or response. For every chunk

of the message all the options are the same, but the Block ones change to keep track

of the number of blocks already sent or received. Both these options have the size

of a byte that contains three parameters:

• NUM (bit 0-3): contains the number of the block that is being requested or

provided;

• M (bit 4): contains flag for control usage, it’s meaning is different for Block1

and Block2 ;

• SZX (bit 5-7): contains an integer value that indicates the size of the block

and it’s calculated using the following formula: BLOCKSIZE = 2SZX+4 .

4.1.1 Block1 example

The Block11 option (see Figure 4.1) is used when the client sends a POST or a PUT

message with the payload split in chunks: every chunk contains a Block11 option

with NUM indicating the sent block’s number, M = 1 if the block is not the last

one and SZX calculated with the proper formula (see above in this section). For

every chunk received the server sends an ACK with the same block option, or with

a smaller value in SZX indicating that the following blocks must be sent with a

smaller size, with a consequent NUM value change. That mechanism is called size

negotiation and is also shown in Figure 4.1. A case where a client must begin a

Blockwise Transfer, if supported, is when after a try with the full message, a 4.13

Request Entity Too Large error is returned (it is a new code defined in the draft).

If the block doesn’t arrive in order or some of them are lost (and also all their

retransmissions) a 4.08 Request Entity Incomplete is returned (another new code).

Chapter 4. CoAP Extensions 34

4.1.2 Block2 example

The Block2 option (see Figure 4.2) is used when the client sends a message (GET)

and the response is slit in chunks: every chunk is an ACK with payload (a piggy-

backed response, see Section 2.2) and contains a Block2 option with NUM indicating

the block number, M = 1 if the block is not the last one and SZX calculated with the

proper formula (see above in this section). For every chunk received the client sends

a request for the further one, with M = 0 and the same SZX. The request of a block

could contain a smaller SZX value indicating that the following blocks must be sent

with a smaller size, with a consequent NUM value change in the request where SZX

changes (late negotiation, shown also in Figure 4.2). If the client knows that the

response will be chunked, it could include a Block2 option with values 0:0:SZX in the

first request, where SZX indicate the preferred block size (early negotiation). Block1

and Block2 combination is possible: a request sent in chunks could be answered with

a chunked response.

Figure 4.1: Block1 example Figure 4.2: Block2 example

Chapter 4. CoAP Extensions 35

4.1.3 Size1 and Size2 options

Other two new options are defined in the draft:

• Size1 : this option could be used in a request carrying a Block1 Option, to

indicate the current estimate the client has of the total size, or in a 4.13

response (see Section 4.1.1), to indicate the maximum acceptable size;

• Size2 : this option could be used in a request, to ask the server to provide a

size estimate along with the usual response (value 0) or in a response carrying

a Block2 Option, to indicate the current estimate the server has of the total

size.

4.1.4 Implementation

Only the client side support for the Blockwise Transfer has been implemented be-

cause the need for the implementation of that function emerged during the HTTP-

to-CoAP Proxy development, since it acts as a CoAP client, as described in Sec-

tion 3.6. For the Blockwise Transfer support a BlockwiseCoapClient class was cre-

ated, first used for the proxy and then extracted as a standalone component. This

class has a sendMessage() blocking method that sends a CoapMessage, waits for

the response and returns it to the caller. If a Blockwise Transfer is not necessary

then it acts as a normal CoAP client, otherwise it passes the message to one of

the two helper classes that handle the Blockwise Transfer: CoapBlock1Client and

CoapBlock2Client. When the message must be sent in chunks is passed to the

CoapBlock1Client, that sends all the blocks and return the final response to Block-

wiseCoapClient. When the response must be received in chunks the first chunk is

passed to the CoapBlock2Client that collects all the following blocks, builds the com-

plete response and returns it to BlockwiseCoapClient. These two helper clients passes

Chapter 4. CoAP Extensions 36

the response to the main one through a method called onBlockTransferComplete(),

method of the CoapBlockClientListener interface, so the BlockwiseCoapClient im-

plements it and passes a reference of itself to the two Block Clients (Observer de-

sign pattern). All that passages are invisible to the user that can only call the

public method sendMessage() and optionally set the parameters for the transfer:

Block1/Block2 preferred size and the Blockwise Threshold.

4.1.5 Using the Blockwise Transfer

The code to start the BlockwiseCoapClient with default values is shown in Listing 4.1

1 CoapMessage coapResponse = new BlockwiseCoapClient(coapHost,coapPort,this.coapProvider,

BlockwiseCoapClient.USE_DEFAULT_THRESHOLD,BlockwiseCoapClient.

USE_DEFAULT_BLOCK1_SIZE,BlockwiseCoapClient.USE_DEFAULT_BLOCK2_SIZE).sendMessage(

coapRequest);

Listing 4.1: Blockwise client example.

4.2 Resource observing

The basic CoAP messaging model does not work well when a client is interested in

having a current representation of a resource over a period of time, so the protocol’s

implementation can be extended with a mechanism that allows a CoAP client to

observe a resource on a CoAP server: the client retrieves a representation of the

resource and requests this representation to be updated by the server as long as

the client is interested. This extension of the protocol is based on the well-known

observer design pattern and is described in the observe-draft [9].

Chapter 4. CoAP Extensions 37

4.2.1 Registering and receiving notifications

A client registers its interest in a resource by sending an extended GET request

to the server: it is a normal GET with the Observe option, a new option defined

in the draft. The value of this new option is an integer, and must be set to 0 for

the registration (or a null value for older versions of the draft). The server then

stores that request and sends periodic notifications as responses for the received

registration message (with the same token), and the observe option with a raising

value over time, value that the client can use to reorder the received notifications.

A CoAP server is the authority for determining under what conditions resources

change their state and thus when observers are notified: for example a notification

could be sent for every change in the resource value or when it reaches a predefined

threshold.

4.2.2 Stopping observing resources

The client could send a periodic registration request to update his observer status,

and if a notification is CON it must respond with an ACK or it will be removed

from the observer’s list. When a registration request arrives the client is added to

the observers if the response code is 2.xx, and removed from them if it was already

registered for that resource and the response code is 4.xx. It is also possible for the

client to directly remove his registration by sending a GET request to the resource

with the Observe option set to 1.

4.2.3 Implementation

For the Java based implementation of this feature on the server side, the class

ObserveHandler, which handles all the features described above, has been created.

Chapter 4. CoAP Extensions 38

The handler needs a ResourceStore as parameter: it is a store where the resources

are saved with the related values. The ObserveHandler exposes methods to register

and unregister observers for a resource, and there’s a ObserveUtil class that contains

static methods to check the presence and value of the Observe option in a request.

The most important method that can be called is the onUpdate() method of the

CoapResourceListener interface: it requires a resource URI as parameter and its

call triggers the sending of a notification to all the observers registered for that

resource, retrieving the value from the store. The ObserveHandler implements the

CoapResourceListener interface so it is the sender of the notifications. It needs a

CoapProvider to perform message sending: it must be set with a setter method. An

interface has been used so that new handlers for the observing functions could be

created without changing the basic functioning of the onUpdate() method.

A client willing to register for observing a resource must send a GET request

with the Observe option set to 0 to the server and a listener for the token of that

request must be set on the client’s CoapProvider. The client must also implement

the CoapProviderListener interface so that he can receive notifications, which are

handled in the onReceivedMessage() method.

4.2.4 Using the Observe option

The code to set up all the classes on the server side is shown in the Listing 4.2,

where also a GetHandler is implemented: it builds the response to a GET request

automatically, by getting the resource value from the ResourceStore. The code to

handle observers registration on the server side is shown in Listing 4.3. The code to

send notifications is shown in Listing 4.4. A last code example shows how to send a

registration GET on the client side (Listing 4.5).

Chapter 4. CoAP Extensions 39

1 this.store = new BasicCoAPResourceStore();

2 this.getHandler = new BasicCoAPGETHandler(this.store);

3 IObserverMap observerMap = new ObserverMap();

4 this.observeHandler = new CoAPObserveHandler(this.store, observerMap);

5 this.observeHandler.setCoapProvider(this.coapProvider);

Listing 4.2: ObserveHandler initialization example.

1 if(msg.getCode() == CoapMethodCode.GET){

2 CoapMessage response = this.getHandler.handleGet(msg);

3 if(this.observeHandler != null)

4 if(ObserveUtil.isObserveOptionPresent(msg, ObserveUtil.

OBSERVE_REGISTER_VALUE) |ObserveUtil.isObserveNullOptionPresent(msg)

){

5 if(response.getCodeAsString().substring(0, 1).equals("2")){

6 //Registering client as observer for that resource

7 if(!this.observeHandler.isObserver(msg.getRemoteSoAddress(),

this.servicesListResourceURI)){

8 this.observeHandler.addObserver(msg.getRemoteSoAddress(),

BinTools.bytesToHexString(msg.getToken()), this.

servicesListResourceURI);

9 response.addOption(new CoAPObserveOption(CoAPObserveHandler.

sequenceNumberToBytes()));

10 CoAPObserveHandler.incSequenceNumber();

11 } else {

12 this.observeHandler.removeObserver(msg.getRemoteSoAddress(),

this.servicesListResourceURI);

13 this.observeHandler.addObserver(msg.getRemoteSoAddress(),

BinTools.bytesToHexString(msg.getToken()), this.

servicesListResourceURI);

14 response.addOption(new CoAPObserveOption(CoAPObserveHandler.

sequenceNumberToBytes()));

15 CoAPObserveHandler.incSequenceNumber();

16 }

17 } else if(response.getCodeAsString().substring(0, 1).equals("4")

18 || response.getCodeAsString().substring(0, 1).equals("5")){

19 //Error, unregistering the client if it is an observer

20 if(this.observeHandler.isObserver(msg.getRemoteSoAddress(), this

.servicesListResourceURI)){

Chapter 4. CoAP Extensions 40

21 this.observeHandler.removeObserver(msg.getRemoteSoAddress(),

this.servicesListResourceURI);

22 }

23 }

24 }else if(ObserveUtil.isObserveOptionPresent(msg, ObserveUtil.

OBSERVE_UNREGISTER_VALUE)){

25 //Explicit deregistration

26 this.observeHandler.removeObserver(msg.getRemoteSoAddress(), this.

servicesListResourceURI);

27 }

28 new CoapTransactionServer(this.coapProvider, msg, this).respond(response);

29 }

Listing 4.3: Observers registration example.

1 this.store.put(resourceUri, new BasicCoAPResource(CoapFormat.APPLICATION_JSON,

newJsonValue));

2 this.observeHandler.onUpdate(resourceUri);

Listing 4.4: Notification example.

1 CoapMessage request = CoapMessageFactory.createRequest(false, CoapMethodCode.GET,null);

2 request.addOption(new CoapOption(CoapOptionNumber.UriHost, serverIp.getBytes());

3 request.addOption(new CoapOption(CoapOptionNumber.UriPort, CoapUtil.intToBytes(

serverPort)));

4 request.addOption(new CoAPObserveOption(new byte[]{0})); //Should be defined as a

constant

5 new CoapTransactionClient(this.coapProvider, this.serverSocketAddress, this).request(

request);

6 this.coapProvider.addListener(CoapMessageSelector.messageTokenSelector(request.getToken

()), this);

Listing 4.5: Client side registration GET example.

4.3 Other extensions

During the development of the HTTP-to-CoAP Proxy and of the above mentioned

CoAP extensions, other classes and interfaces have been developed, to be added to

Chapter 4. CoAP Extensions 41

the mjCoAP library, in order to simplify the extraction of some information from

CoAP messages.

4.3.1 CoapFormat

This package was developed to help the programmer in the sending and receiving of

the media types as values for the Content-Format and Accept options. The value of

these options must be an integer that identifies the type (see Table 4.1).

Media type Integer ID
text/plain;charset=utf-8 0
application/link-format 40
application/xml 41
application/octet-stream 42
application/exi 47
application/json 50

Table 4.1: Media type identifiers.

With this library it is possible to simply obtain the number as an integer constant

from the CoapFormat class, or to obtain his byte value from the enum CoapFormat-

Type. Is it also possible to add the Accept and Content-format options to a message

using the CoapAcceptOption and CoapContentFormatOption classes, or with the

normal CoapOption class. The first implementation uses the extended options and

the enum type, and is shown in Listing 4.6. The second uses the basic CoapOption

and the CoapFormat constants and is shown in Listing 4.7.

Chapter 4. CoAP Extensions 42

1 //Adding the content format option:

2 coapMessage.addOption(new CoapContentFormatOption(CoapFormatType.TEXT_PLAIN));

3 //Extracting the option:

4 o = new CoapContentFormatOption(CoapUtil.getCoapOption(coapMessage,CoapOptionNumber.

ContentFormat).getValue());

5 if (o.equals(CoapFormatType.TEXT_PLAIN))

6 System.out.println("Text plain format!");

Listing 4.6: CoapFormat example, using the enum CoapFormatType.

1 //Adding the content format option:

2 coapMessage.addOption(new CoapOption(CoapOptionNumber.ContentFormat, new byte[]{

CoapFormat.TEXT_PLAIN_UTF_8});

3 //Extracting the option:

4 System.out.println("Content-format: " + CoapFormat.toString(CoapFormat.fromBytes(

CoapUtil.getCoapOption(coapMessage, CoapOptionNumber.ContentFormat).getValue())));

Listing 4.7: CoapFormat example, using the class CoapFormat.

4.3.2 CoapUtil

CoapUtil is a package grouping a set of of static classes created to cope with some

mjCoAP library limitations. These problems mainly derive from the fact that option

values are represented as byte arrays, which make it possible to violate the format

intended for a given option. For instance, the Uri-Port option expects an integer

value, but the library allows to insert a string value as a byte array. In order to

solve these issues, the following methods have been implemented:

• int bytesToInt(byte[] value): converts a byte array (of any length) to an Integer

number. For instance, if the byte array contains 22,51 the number will be

22*256 + 51 = 5683.

• byte[] intToBytes(int value): converts an integer number into a byte array. For

instance, if the number is 5683 the byte array will contain 5683 div 256, 5683

Chapter 4. CoAP Extensions 43

mod 256 (div is the integer division).

• CoapOption getCoapOption(CoapMessage m, int optionNumber): extracts a

CoAP option from the message m, with the selected option number. In the

library there is only a method that extracts the String value of a CoAP option

from a message, or another one that extracts an array with all the options, but

there isn’t a method to extract a single CoAP option returned as a CoapOption

object. It is necessary because if an Integer value is needed it’s not possible

to extract it from the String value.

• LinkedHashSet<CoapOption> getCoapOptions(CoapMessage m,int optionNum-

ber): like the method above, but extracts a List of options with the selected

option number. The library doesn’t contain a method to extract a multiple

CoAP option but it is necessary: for example to retrieve all the Uri-Path or

Uri-Query options and rebuild the request URI (see Section 2.2).

• String getMessagePath(CoapMessage msg): this method extracts all the Uri-

Path options and returns the whole request path as a String.

• String getMessageQuery(CoapMessage msg): this method extracts all the Uri-

Query options and returns the whole request query as a String.

Chapter 5

Experimental evaluation

The first phase of the evaluation and testing process was concentrated on separated

tests for the single classes and libraries:

• HTTP-to-CoAP Cross-Proxy: the proxy was tested by creating a Java

CoAP test server simulation of a parking lot scenario. In that scenario a

CoAP server contains a list of parking spots that can be free or busy and

handles the single parking’s status modification via POST message. With a

GET at /parkings the whole list is returned, with the status of every parking,

and with a GET at /parkings/N the response is the status of the parking spot

number N.

For the test, the described Parking Lot Server and the HTTP-to-CoAP Proxy

were started, and then GET requests were performed to the server via HTTP,

through the Proxy, using DHC as HTTP client (see Section 2.4.1). The park-

ing’s status could be modified using Copper (see Section 2.3.3) or a Java CoAP

client;

• Blockwise Coap Client: For the testing of the BlockwiseCoapClient it was

44

Chapter 5. Experimental evaluation 45

used to perform requests to a Contiki node (see Section 2.3.4), set up by

another student, that responded with a message split in chunks. A test server

was programmed in Java to verify all the possible Blockwise Transfer cases;

• Observe: To test the observe package a Java server that implemented the

ObserveHandler was created, as described in Section 4.2, and then his resources

were observed using different clients like Copper or a Java based one;

• CoapFormat and CoapUtil: these two packages are linked and used as

external libraries in all the other projects so their test was simply programming

and testing the CoAP extensions listed above and described in all the previous

chapters.

5.1 Demonstrative IoT Scenario

The final test of the components was to build a complex architecture to demonstrate

the power of the Internet of Things and the interoperability among elements using

standard protocols. The development of all the software for the components has been

done by a team of B.Sc., M.Sc., and Ph.D. students, at the WASN Lab (Wireless

Ad hoc Sensor Network Laboratory) of the Department of Information Engineering

of the University of Parma.

This demo was then presented as a project of the WASN Lab at the SPS IPC

Drives Italia 20141 in Parma, May 20-22, 2014, and at the European Conference

on Networks and Communications (EuCNC 2014) in Bologna, June 25-27, 2014.

An illustrative representation of the architecture is shown Figure 5.1, followed by a

description of the various components.
1http://www.spsitalia.it/

Chapter 5. Experimental evaluation 46

Figure 5.1: Demonstrative IoT architecture created at the WASN LAB.

The basic idea is that a sensor in the architecture, when started, sends a POST

message to the ResourceDirectory (RD) with a list of the services that it offers,

and the RD must send the services list to the ObserverClient (OBS) every time

a new service is added: the OBS is registered to the RD’s services list resource.

Chapter 5. Experimental evaluation 47

The OBS then registers to all the services on the list and their values (received as

notifications) are posted real-time on a Smart Display. The detailed descriptions of

the components are described next.

• Raspberry Pi: represented in the image by the orange box in the middle, it’s

a single-board computer developed in the UK from the Raspberry Pi Founda-

tion. In this case is used to run the Resource Directory, the Observer Client

and the HTTP-to-CoAP Proxy (as .jar files). It’s connected to an IPv4 net-

work via Ethernet (direct cable to the network’s router) and to the IPv6 IEEE

802.15.4 network’s border router, where the IPv6 network contains a series of

nodes running Contiki (see Section 2.3.4).

• Resource Directory (RD): it is a Java CoAP server that offers as a resource

the list of the services, published with a specific path (e.g. /services). If it

receives a POST message with a JSON list of URIs, addressed to the list’s

path, it adds them to the services list with also their http URI (Proxy’s base

URI and concatenated CoAP URI). If it receives a GET addressed to the

list’s path it returns the whole list, that is also observable. The handling of

observers and notifications is based on the library developed for this thesis.

• Observer Client (OBS): it is a Java CoAP client that performs a registration

to the services list of the RD. When an updated version of that list arrives

(in a notification) the OBS sends a registration GET to all the new listed

services, and after that it will receive periodic values from all these resources,

via notification, and it will post them to the Smart Display. In practice, every

time that a new service is present in the list the node related to its IP is added

to the display, if not present, and then the service is attached to that node

waiting for the periodic values that will be displayed on the graph.

Chapter 5. Experimental evaluation 48

• HTTP-to-CoAP Proxy (HC): it is the proxy developed for this thesis and

can be used to send CoAP requests to the nodes via HTTP. In this scenario

it is also the only way to perform requests from the IPv4 network to the IPv6

one.

• Smart display (SD): the smart display, developed by the WASN Lab, is a

web application that handles http POSTs by adding nodes and graphs of the

related services. The messages are handled by a Smart Display Proxy(a Java

application).

• Contiki border router (BR): it is the border router for the IPv6 network

of Contiki nodes.

• Contiki nodes (C): nodes with Contiki OS, every node offers some services

and periodically posts them to the RD. It also responds to GET requests that

arrives from the OBS (with registration) or from the HC, and sends periodic

notification to observers (like the OBS once registered) with the value of the

resources. The services offered by these nodes in the demo were temperature,

light and movement, and their values were retrieved through sensors attached

to them.

• Arduino Yun (∞): it has the same behaviour of the Contiki nodes, but on

the IPv4 side of the architecture, and it’s programmed in Python. In the demo

it offered a temperature sensing service.

• Intel Galileo: it has the same behaviour of the Arduino Yun, but programmed

in Java. In the demo it offered a temperature sensing service.

• Android app A: it is a CoAP server with the same behaviour of the Contiki,

Chapter 5. Experimental evaluation 49

Arduino and Galileo nodes, but implemented as an Android application. In

the demo it offered a noise sensing service.

• Android app B: it is an Android application that shows a list of the services

on the network, obtained via GET request to the resource directory, and can

perform a GET request to their HTTP version through the HTTP-to-CoAP

Proxy, or to their CoAP version only if the node is reachable on the IPv4

network.

Chapter 6

Conclusions and future work

The objective of this thesis was to create an HTTP-to-CoAP Proxy for the in-

teroperability among application-layer protocols in IoT scenarios. The Proxy, has

been developed as a Java application based on the mjCoAP library, it performs

protocol translation, and it respects the main guidelines of the related draft. The

http-mapping-draft is still incomplete because it is at an early version (3 at the

moment), and, therefore, a future work will be the proposal of some changes based

on the experience and the implementation choices made during the development of

the Proxy.

The development includes support for Blockwise Transfer (an option mentioned

in the draft). Because of that, and also because this kind of transfer is not supported

by the mjCoAP library, a client with that feature has been implemented. It was

developed following the related draft and implemented as a standalone component to

allow its use as a CoAP client also outside the proxy. A further thing to do could be

to implement the support for the server side handling of the Blockwise Transfer, and

also to integrate both the sides implementations in the mjCoAP library, possibly in

a transparent way for developers. For instance, these functions could be integrated

50

Chapter 6. Conclusions and future work 51

in the methods request() and onTransactionResponse() and the programmer must

only choose if activating or not the Blockwise Transfer, and setting its parameters.

After the implementation of the HTTP-to-CoAP Proxy and Blockwise CoAP

client, support for the CoAP Observe option has been implemented. This library

was developed following the related draft and it became very useful in the laboratory,

since it was used as base of the demonstrative scenario described in Chapter 5. Some

further work related to that library could be its integration in mjCoAP and also

the support of observing function with Blockwise Transfer, described as a possible

implementation in the Blockwise Transfer draft.

Moreover, the CoapUtil and CoapFormat libraries have been implemented in

order to cope with some limitations of the mjCoAP library. These libraries should

be integrated in the next version of mjCoAP.

In conclusion, all the software modules implemented in this work have been

tested and played a central role in the demonstrations made by the WASN Lab at

the SPS IPC Drives Italia fair and the EuCNC 2014 Conference. The demonstrative

testbed also involved components developed by other students and researchers of

the laboratory, and proved the real power of the Internet of Things based on the

use of standard protocols (CoAP, IP, RPL, IEEE 802.11, IEEE 802.15.4) with the

integration of heterogeneous devices, in terms of hardware platforms, connectivity,

operating systems, and implemented functionalities.

Bibliography

[1] Cisco, Lopez Research LLC, An Introduction to the Internet of Things

(IoT), http://www.cisco.com/web/solutions/trends/iot/

introduction_to_IoT_november.pdf, November 2013.

[2] Wikipedia, 6LoWPAN, http://en.wikipedia.org/wiki/6LoWPAN#

cite_note-3.

[3] Standard track, rfc6550, http://tools.ietf.org/html/rfc6550#

page-154.

[4] Internet rfc - core working group, rfc7252, http://tools.ietf.org/

html/rfc7252.

[5] Cisco, Lopez Research LLC, Building Smarter Manufacturing With The

Internet of Things (IoT), http://www.cisco.com/web/solutions/

trends/iot/iot_in_manufacturing_january.pdf, January 2014.

[6] Cisco, Lopez Research LLC, Smart Cities Are Built On The Internet

Of Things, http://www.cisco.com/web/solutions/trends/iot/

docs/smart_cities_are_built_on_iot_lopez_research.pdf.

[7] Roy Fielding Representational State Transfer, http://www.ics.uci.edu/

~fielding/pubs/dissertation/rest_arch_style.htm.

52

http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf
http://www.cisco.com/web/solutions/trends/iot/introduction_to_IoT_november.pdf
http://en.wikipedia.org/wiki/6LoWPAN#cite_note-3
http://en.wikipedia.org/wiki/6LoWPAN#cite_note-3
http://tools.ietf.org/html/rfc6550#page-154
http://tools.ietf.org/html/rfc6550#page-154
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7252
http://www.cisco.com/web/solutions/trends/iot/iot_in_manufacturing_january.pdf
http://www.cisco.com/web/solutions/trends/iot/iot_in_manufacturing_january.pdf
http://www.cisco.com/web/solutions/trends/iot/docs/smart_cities_are_built_on_iot_lopez_research.pdf
http://www.cisco.com/web/solutions/trends/iot/docs/smart_cities_are_built_on_iot_lopez_research.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Bibliography 53

[8] Internet rfc, rfc3986, http://tools.ietf.org/html/rfc3986.

[9] Internet draft - core working group, draft-ietf-core-observe-14, http://

tools.ietf.org/html/draft-ietf-core-observe-13.

[10] Internet draft - core working group, draft-ietf-core-block-14, http://tools.

ietf.org/html/draft-ietf-core-block-14.

[11] Internet draft - core working group, draft-ietf-core-http-mapping-03, http://

tools.ietf.org/html/draft-ietf-core-http-mapping-03.

[12] Wikipedia, Contiki, http://en.wikipedia.org/wiki/Contiki.

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-ietf-core-observe-13
http://tools.ietf.org/html/draft-ietf-core-observe-13
http://tools.ietf.org/html/draft-ietf-core-block-14
http://tools.ietf.org/html/draft-ietf-core-block-14
http://tools.ietf.org/html/draft-ietf-core-http-mapping-03
http://tools.ietf.org/html/draft-ietf-core-http-mapping-03
http://en.wikipedia.org/wiki/Contiki

	Introduction
	IP-based Internet of Things
	Low-power and lossy networks
	6LowPAN
	RPL
	CoAP

	IoT scenarios and Smart-X applications
	Smart Manufacturing
	Smart Cities

	Thesis objectives

	State of the art
	RESTful architecture and applications
	CoAP protocol
	CoAP messaging
	CoAP extensions

	CoAP related work
	mjCoAP
	Other CoAP libraries
	Copper (Cu)
	Contiki OS

	Other protocols and utilities
	Dev HTTP Client (DHC)
	Jetty HTTP server

	HTTP-to-CoAP Cross-Proxy
	Use cases examples
	Forward Proxy and Reverse proxy
	URI mapping
	Possible mapping templates

	Protocol translation
	HTTP-to-CoAP request translation
	CoAP-to-HTTP response translation

	Implementation
	The HTTP Server
	The Translator
	The CoAP Client
	Other components

	Using the Cross-Proxy

	CoAP Extensions
	Blockwise Transfer
	Block1 example
	Block2 example
	Size1 and Size2 options
	Implementation
	Using the Blockwise Transfer

	Resource observing
	Registering and receiving notifications
	Stopping observing resources
	Implementation
	Using the Observe option

	Other extensions
	CoapFormat
	CoapUtil

	Experimental evaluation
	Demonstrative IoT Scenario

	Conclusions and future work
	Bibliography

