
Advanced User Interfaces: Technology - Competition
Report

Eric Camellini
Politecnico di Milano

Milan, Italy
eric.camellini@mail.polimi.com

ABSTRACT
This report describes the approach adopted by the author to
obtain his final submission for the Advanced User Interfaces:
Technology competition1, a prize that was part of the course
with the same name, held in Politecnico di Milano univer-
sity by professor Paolo Cremonesi. The final submission was
obtained by using the Factorization Machines approach de-
scribed in [3], and the LibFM library for the execution of
the algorithm. The library implementation is described in
[4] and ,for the execution, the guidelines can be found in [5].

In particular, the main topic of this work was to modify the
dataset format in order to apply the factorization machine
approach, by trying to experiment with different inputs: at
first with a pure Collaborative Filtering approach, and then
by adding Content informations for users and items. The
final submission was obtained with a mix of these two ap-
proaches, and obtained a score of 0.23777 accordingly to
the MAP@5 evaluation for the competition. This score was
above the score obtained by applying the Global Effects [1]
algorithm but below the Top Popular score (obtained by
recommending the 5 more rated items), so it is not an opti-
mal solution in this particular case.

1. INTRODUCTION
1.1 Competition description
The competition context was similar to the one of the Netflix
prize2: recommending movies to users on the basis of past
ratings and movie/user informations. In particular the ob-
jective was to predict a list of 5 movies for a set of cold-start
users (i.e., users with only 5 ratings). The original dataset
contained almost 1 million ratings for 6040 users and 3920
items, but the dataset available was a split of the described
one, where each non-cold-start user rated 20 items. The

1http://inclass.kaggle.com/c/
aui-technology-2014-competition-new
2http://www.netflixprize.com/

cold-start users (recommendations addressees) were a sub-
set of 1238 users (almost the 20 percent of the total).

1.2 Competition evaluation
The evaluation metric chosen for the submissions was Mean
Average Precision at 5 (MAP@5) and three baselines were
already registered in the leader-board:

• The lowest baseline was the score obtained by recom-
mending 5 random items to each test user;

• Another baseline was the score obtained by the famous
Global Effects algorithm[1];

• The highest baseline was obtained by recommending
to the test users the 5 top popular items, that are the
5 most-rated items in the dataset (the fact that this
baseline’s score was good in terms of MAP@5 should
have been a suggestion: basing the algorithm on the
popularity could have been an interesting solution);

This evaluation metric was chosen because most of the
recommender systems material that is available on-line
is based on the Root Mean Square Error evaluation
(RMSE), and minimizing the RMSE often causes a
decrease in the precision, so it is not a good solution in
this scenario. This choice should have encouraged the
participants to avoid the usage of known algorithms,
or try to implement a brand new, particular solution
to maximize MAP@5.

1.3 Factorization Machines
This section provides a brief introduction to Factorization
Machines applied to recommender systems. With this tech-
nique it is possible to mix Collaborative Filtering and Con-
tent Based approaches in a single optimization problem: it
can be proven that Collaborative Filtering or Content Based
algorithms implemented using Matrix Factorization ([2]) are
all particular cases of a Factorization Machine.

The idea is to express all the informations that are needed
in a single Matrix. At first, a pure Collaborative Fltering
approach with Factorization Machines will be described, fol-
lowed by the description on how to include additional infor-
mations like the Content of items/users.

It is possible to see the construction of the needed matrix as
a table:

• a column contains all the non-zero ratings (this column
is called Y) ;

• for each element of Y there is a corresponding row in
the table (a vector x, row of the matrix X, that is the
cited table without the column Y);

For the Collaborative Filtering approach, this matrix X has

(number of users) + (number of items)

columns, and for each rating in Y, the corresponding row
will have 0 under each column, except for the columns that
correspond to the user and the item related to that specific
rating.

For example, if the choice is to put the users columns before,
in the matrix, and there are 100 users and 100 items, then
there will be the columns 0-99 for users and 100 - 199 for
items. If the first cell of Y contains the rating that user
2 gave to item 4 then the first row of X will have 1 under
the column 1 (the column that represents the user 2), 1
under the column 103 (the column index for item 4) and 0
elsewhere.

Moreover, the matrix X can be seen as clustered in different
groups, the users’ and the items’ one in this case, and each
group will have its own regularization term in the execution
of the optimization problem that learns the parameters.

At this point it is easy to understand how to add other
informations: if for example the objective is to add the genre
of the items, it is sufficient to add a new group to the matrix
X, with as many columns as the number of genres in the
dataset, and to put 1 under the columns of the right genre
for each row of X corresponding to the related rating in Y.

The Factorization Machine approach has the objective to
express the values of Y as depending on the interactions
between the values of X, with the following formula:

y(~x) = w0 +
∑
j

wjxj +
∑
j

∑
i>j

wjixjxi

where w0 is a normalization term, and wj and wji are pa-
rameters that express the hidden patterns in the X matrix.
In particular, the wj express how the rating depends from
each column (first order interaction), and the wji express
second order interaction between columns, for example:

• if i is an item column and j is a user column, then wji

expresses how much user j likes item i ;

• if i is a movie genre’s column and j is a user column,
then wji expresses how much user j likes items of that
genre i ;

and many other examples could be formulated, depending
on which data are included in the matrix (Content, Context
informations etc...). So the power of the Matrix Factoriza-
tion approach is that it makes possible to mix any kind of
information in a single optimization problem.

The problems of this approach are:

• The wji are many, and it is not feasible to learn so
many parameters. To solve this problem the Factor-
ization Machine approach uses Matrix Factorization
([2]) to estimate the wji matrix, that is symmetric,
and so the estimation of this parameters is equivalent
to the estimation of the latent factors of this matrix
factorization (this reduces the estimation of thousands
of parameters to the estimation of a few factors, e.g.
10).

• It is a sort of extension of the Matrix Factorization,
so it preserves all the problems of this approach, like
the fact that it is computationally complex, and the
execution takes a while;

• To solve all the optimization problems (in order to es-
timate all the parameters) it uses RMSE minimization
techniques, and that is the reason for which it is not
so good for this competition, because of the consider-
ations made in Section 1.2.

1.4 LibFM
LibFM is a C++ library for Factorization Machines that
features stochastic gradient descent (SGD) and alternating
least squares (ALS) optimization as well as Bayesian infer-
ence using Markov Chain Monte Carlo (MCMC), used to
estimates the parameters of the model. For this work the
library has been executed via executable file, by testing it
with many different input datasets and commands or opti-
mization methods.

LibFM supports different data formats for the input files, all
described in [5]. In particular it has been chosen to use the
text file input format, where Each row contains a training
case x y for the feature vector x with the target y, as de-
scribed in Section 1.3. The row states first the value y and
then only the non-zero values of the vector x.

For example:

4 0:1 6040:1

In the competition scenario, if the users group is the first
cluster in the X matrix, this row means that the item cor-
responding to the column 6040 was rated by the user corre-
sponding to the column 0 with a rating of 4. In the dataset
available for the competition there were 6040 users, 3952
items and 18 movie genres, so the row in the example means
that user 1 rated item 1 (that is the first column after the
columns 0-6039, the one for the users) with a rating of 4.

Another example, with movie genre:

4 0:1 6040:1 9992:0.5 9993:0.5

In this example, for the same rating case shown above there
are also genre informations, 9992 is the column that maps
the first genre of the 18 that are used (it is the first column

after the 0-6039 used for the users and the 6040-9991 used for
the items). If an item has more that 1 genre then the value
in the corresponding genres columns is set to 1/(number of
genres) (2 genres in the shown example).

With a train file formatted in this way it is possible to launch
the LibFM library and to predict the ratings for the rows
listed in another file, with the same format. It is also possible
to choose:

• the number of parameters, by choosing to enable or not
the bias parameter (w0 in the Factorization Machines
formula), the first order interactions (wj summation
in the formula) and the number of features used to
approximate the second order interactions as described
in Section 1.3;

• the approach used to solve the optimization problem
(ALS, SGD, MCMC);

• the parameters for the optimization, depending on the
chosen approach;

• the number of iterations;

• to enable or not the clustering (the grouping) of the
X matrix: this will cause each group to have a single
regularization term during the optimization.

2. EXECUTIONS AND RESULTS
2.1 Dataset manipulation
To use LibFM for this competitions, it has been necessary
to convert the dataset in a format accepted by the library.
This task was performed through some programs written
using the Java language:

• A program that generates the training file for LibFM,
with the format described in Section 1.4, and that also
produces a file that contains all the predictions to be
performed, in the same format. This second file con-
tains all the rows corresponding to the items that the
test users hasn’t rated yet, and it is used by LibFM to
know which ratings it must predict;

• A progam that takes the LibFM output file, and gen-
erates a submission for the competition, in the proper
format. In this program is also possible to choose to
include some top popular items in the recommenda-
tions (as the last ones in the 5 recommended items).
Note that the items recommended in this way are not
personalized recommendations, so it is not a good ap-
proach for the competition, but could result in an im-
provement in the precision;

• A program to mix two submissions, choosing how many
items to keep from the first and the second one. In par-
ticular this program takes the selected number of items
from the first one, and the selected number of items
from the second one. In case of duplicates, to reach the
5 recommendations the missing ones are taken from
the first.

All this Java programs were built ad-hoc for the competi-
tion, but with some modifications in the code, and by adding
a few parameters, could be adapted to execute the approach
described in this paper to a generic recommendation sce-
nario.

2.2 Executions
The LibFM library has been executed by trying the different
optimization approaches, and varying their parameters. It
has been experienced that on the dataset used for the com-
petition, the most effective one (in terms of the MAP@5
evaluation metric) is the MCMC (Bayesian inference using
Markov Chain Monte Carlo) approach, with 8 features (used
to approximate the second order interaction), an initial stan-
dard deviation of 0.1 and 1000 iterations.

For all the executions were enabled also the factors corre-
sponding to the first two terms of the Factorization Machines
formula described in Section 1.3.

Once found the best approach in terms of the library func-
tioning, the described configuration has been tested with
different informations included in the input files:

• In a pure Collaborative Filtering way, by setting only
rating, user and item columns;

• Collaborative Filtering as described above, by adding
also informations on the genre of each item;

• Collaborative Filtering as described above, by adding
also informations on the gender of each user;

• Collaborative Filtering as described above, by adding
both the Content Based information described in the
previous points;

Each one of the described configurations, where also Content
informations are included, has been tested assigning also
different weights to the genre and gender columns. This
because, for example, the gender of the user cannot be as
relevant as the genre of the movie, and so the column of
the movie genre could contain 1, and the column of the user
gender a lower value (e.g. 0.5).

Moreover, each one of the described configurations has been
tested with the LibFM grouping function enabled and dis-
abled. When the grouping function is enabled, each cluster
(users, items, genres, genders) corresponds to a single regu-
larization term during the optimization. In the competition,
executions without grouping were better according to the
evaluation of the corresponding submissions.

In Table 2.2, some of the most relevant results are shown,
with the corresponding MAP@5 value, obtained by the re-
lated submissions.

2.3 Mixing submissions
In order to improve the score, different couples of submis-
sions were mixed together, by taking some recommendations
from both as described in Section 2.1. The best score ob-
tained with this approach can be seen in Table 2.2: in par-
ticular, the two best scores obtained using the approaches

Table 1: LibFM results in the competition
Approach MAP@5 MAP@5

(competition split) (full dataset)
(1) Pure Collaborative Filtering with grouping 0.22121 0.21288
(2) Pure Collaborative Filtering without grouping 0.23175 0.21930
(3) With movie genre (weight 1) and grouping 0.22519 0.21246
(4) With movie genre (weight 1) and without grouping 0.22970 0.22283
(5) With movie genre and user gender (both weight 1, no grouping) 0.22222 0.21618
(6) Mixing (2) and (4) [See Section 2.3] 0.24620 0.23777
(7) 4 Top Popular items + the best one from (2) [See Section 2.4] 0.27477 0.27493

described in this report have been mixed together, reaching
a score of 0.24620.

2.4 Popularity considerations
The top popular approach of recommending the most rated
items to all the users was one of the baselines of this com-
petition. It is a not personalized approach but its score
is good in terms of MAP@5, 0.27 in the competition split
and 0.30671 on the full dataset. In order to make some ex-
perimentations, the best submission obtained with LibFM
was also mixed with this approach by recommending some
popular items and some other items obtained with the Fac-
torization Machine. In particular the best score has been
reached by recommending the 4 most rated items to each
user, plus the personalized best recommendation obtained
via LibFM.

The result of this experiment can be seen in Table 2.2, it
surpassed the top popular baseline on the split of the dataset
available for the competition, but not on the full dataset
(used to evaluate the final score): this is because the 4 most
rated items obtained from the split, that contained a little
percentage of the ratings, were likely different from the ones
in the full dataset.

Despite the good score obtained, this approach wasn’t cho-
sen as final submission for the competition because 4 items
of the 5 recommended were the same for all the users, so it
was not a personalized solution.

3. CONCLUSIONS
The objective of this work was to apply the Factorization
Machines approach to movie recommendation, in the AUI:Technology
competition scenario, in order to obtain a good score in
terms of the MAP@5 evaluation metric.

The approach was applied successfully to the provided dataset
by using Java programs to create the different training sets
for the Factorization Machine algorithms (in all the con-
figuration described in this report), the LibFM library to
execute the algorithm and tune the parameters, and other
Java programs to produce suitable submission files and to
mix them together.

Despite the success of the experiments, the score obtained
was only sufficient to outclass the Global Effects threshold,
but not the Top Popular one. This is because in the pa-
rameters learning procedure, the Factorization Machines ap-
proach minimizes the RMSE, and by experience it is known
that doing so results in an improvement in the accuracy (if

the evaluation is performed using the RMSE metric) but it
is not effective in terms of precision.

The idea was that including also the content informations,
and so mixing Collaborative Filtering and Content Based
approaches into a single optimization problem, could have
resulted in a good improvement in the score, but the exper-
iments show that this is not true (Table 2.2). A slight im-
provement is obtained by mixing the submissions obtained
by the approaches with and without content informations, or
by mixing the LibFM recommendations with the Top Pop-
ular approach, but all these results are still below the Top
Popular threshold in the full dataset.

4. REFERENCES
[1] R. M. Bell and Y. Koren. Improved neighborhood-based

collaborative filtering. In KDD Cup and Workshop at
the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. sn, 2007.

[2] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 8:30–37, 2009.

[3] S. Rendle. Factorization machines. In Data Mining
(ICDM), 2010 IEEE 10th International Conference on,
pages 995–1000. IEEE, 2010.

[4] S. Rendle. Factorization machines with libFM. ACM
Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May 2012.

[5] S. Rendle. libFM 1.4.2 - Manual -
http://www.libfm.org/libfm-1.42.manual.pdf, 2014.

